基于深度学习的端到端掩模优化任务
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


End-to-end Mask Optimization Task Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    目的 针对光刻系统与特征尺寸不匹配导致的光刻图案与掩模图案严重偏差的问题,提出了一个基于深度 学习的端到端掩模优化框架 TransU-ILT。 方法 该框架使用 CNN-Transformer 的混合模型作为特征提取模块提取 目标布局的深度特征,在特征重构模块中加入像素重组层来重构掩模;此外,在训练过程中,加入深度监督机制提 高对布局图案特征的提取精度,从而进一步提高掩模的可印刷性。 结果 实验定量结果表明:与最先进的方法相比, 所提出的框架可以实现 4 倍的周转时间加速,在平方 L2 误差和工艺变化带指标方面分别降低了 13. 4%和 4. 3%, 且框架生成的掩模晶圆图案边缘更加平滑,更接近目标布局。 结论 TransU-ILT 在时间性能和掩模可印刷性方面 总体上优于对比的先进方法,可以为掩模优化方法提供一种有效的解决方案

    Abstract:

    iming at the problem of serious deviation between lithography pattern and mask pattern caused by the mismatch between lithography system and feature size an end-to-end mask optimization framework TransU-ILT based on deep learning was proposed. Methods The framework used the CNN-Transformer hybrid model as a feature extraction module to extract the depth features of the target layout and added a pixel reorganization layer to the feature reconstruction module to reconstruct the mask. In addition in the training process the depth supervision mechanism was added to improve the extraction accuracy of layout pattern features so as to further improve the printability of the mask. Results Quantitative experimental results showed that compared with the most advanced methods the proposed framework achieved a 4X turnaround time acceleration reduced the square L2 error and the process change band index by 13. 4% and 4. 3% respectively and the wafer pattern edge of the mask generated by the framework was smoother and closer to the target layout. Conclusion TransU-ILT is superior to other advanced methods in terms of time performance and mask printability which can provide an effective solution for mask optimization methods

    参考文献
    相似文献
    引证文献
引用本文

汤府鑫 ,徐 辉.基于深度学习的端到端掩模优化任务[J].重庆工商大学学报(自然科学版),2024,(6):39-48
TANG Fuxin XU Hui. End-to-end Mask Optimization Task Based on Deep Learning[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2024,(6):39-48

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-11
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升