引用本文:李卫校a ,凌六一a,b.基于 EEG-TCNet 的运动想象脑电识别方法(J/M/D/N,J:杂志,M:书,D:论文,N:报纸).期刊名称,2025,42(1):123-128
CHEN X. Adap tive slidingmode contr ol for discrete2ti me multi2inputmulti2 out put systems[ J ]. Aut omatica, 2006, 42(6): 4272-435
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 546次   下载 474 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于 EEG-TCNet 的运动想象脑电识别方法
李卫校a ,凌六一a,b1,2
1.安徽理工大学 a. 电气与信息工程学院;2.b. 人工智能学院, 安徽 淮南 232001
摘要:
目的 针对以深度学习为解码的方法在运动想象脑电信号识别过程中仅对原始的运动想象脑电信号进行特 征提取而不进行样本扩充和往往采用单一尺度的卷积对多频段的运动想象脑电信号进行特征提取,无法充分发掘 各频段之间相关性的问题,在主流 EEG-TCNet 解码方法的基础上提出了一种样本扩充和多尺度的解码方法。 方法 首先,对运动想象脑电信号进行分割,以增加数据集样本数,将运动想象脑电信号等间隔下采样成 3 个不同的子序 列,每个子序列都含有与原始运动想象脑电信号相同的数据特征;其次,使用 EEGNet 对每个子序列进行特征提取, 对不同的子序列使用不同尺度的 EEGNet 以便提取不同频段的特征;之后,对每个经过 EEGNet 提取后的子序列采 用一种基于卷积滑动的方法再进分割,充分挖掘每个子序列潜在的信息;再次,将每个处理后的子序列传入到时间 卷积网络进行特征提取和降维;最后,对所有处理后的子序列进行拼接、平均操作,并传入到全连接层进行识别。 结果 在公开的 BCI 竞赛数据集 IV-2a 上进行验证,所做出改进的网络相对于 EEG-TCNet、EEGNet 的解码准确度 分别有 5. 19%和 7. 7%的提升。 结论 证明所做出改进的网络在运动想象脑电信号识别任务中具有更理想的解码 性能。
关键词:  EEG-TCNet  运动想象脑电信号  卷积神经网络  时间卷积网络
DOI:
分类号:
基金项目:
Motor Imagery EEG Recognition Method Based on EEG-TCNet
LI Weixiaoa LING Liuyia b
a. School of Electrical and Information Engineering b. School of Artificial Intelligence Anhui University of Science and Technology Anhui Huainan 232001 China
Abstract:
Objective This study addresses the limitations of deep learning-based methods in recognizing motor imagery electroencephalography EEG signals which primarily focus on feature extraction from raw signals without sample augmentation and often utilize single-scale convolutions to extract features from multi-band EEG signals. This approach fails to fully explore the correlations between different frequency bands. Therefore a sample augmentation and multi-scale decoding method was proposed based on the mainstream EEG-TCNet decoding technique. Methods First the motor imagery EEG signals were segmented to increase the number of samples in the dataset. The motor imagery EEG signals were downsampled at equal intervals into three different subsequences with each subsequence containing the same data characteristics as the original motor imagery EEG signal. Next EEGNet was used to extract features from each subsequence employing different scales of EEGNet for different subsequences to capture features from various frequency bands. Afterward a convolutional sliding method was applied to further segment each subsequence processed by EEGNet fully exploring the latent information of each subsequence. Subsequently each processed subsequence was fed into a temporal convolutional network for feature extraction and dimensionality reduction. Finally all processed subsequences were concatenated and averaged which were then input into a fully connected layer for recognition. Results The proposed improved network was validated on the public BCI Competition Dataset IV-2a showing an increase in decoding accuracy of 5. 19% and 7. 7% compared with EEG-TCNet and EEGNet respectively. Conclusion The improved network demonstrates better decoding performance in motor imagery EEG signal recognition tasks.
Key words:  EEG-TCNet motion imagery EEG signals convolutional neural network temporal convolution network
重庆工商大学学报(自然科学版) 版权所有
地址:中国 重庆市 南岸区学府大道19号 重庆工商大学学术期刊社 邮编:400067
电话:023-62769495 传真:
您是第4748799位访客
关注微信二维码