引用本文:张巍, 杨宜平.工具变量线性回归模型的指数平方损失估计(J/M/D/N,J:杂志,M:书,D:论文,N:报纸).期刊名称,2022,39(2):99-106
CHEN X. Adap tive slidingmode contr ol for discrete2ti me multi2inputmulti2 out put systems[ J ]. Aut omatica, 2006, 42(6): 4272-435
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 890次   下载 2069 本文二维码信息
码上扫一扫!
分享到: 微信 更多
工具变量线性回归模型的指数平方损失估计
张巍, 杨宜平1,2
1. 重庆工商大学 数学与统计学院, 重庆 400067;2.2. 重庆工商大学 经济社会应用统计重庆市重点实验室, 重庆 400067
摘要:
在讨论协变量和响应变量关系时,常会遇到内生变量,已有关于内生变量的研究大多是在最小二乘目标函数的框架下讨论,然而该方法不具有稳健性,鉴于此,本文采用指数平方损失估计方法,构造模型中回归系数的稳健估计。为了克服内生变量对估计产生的偏差,利用工具变量消除协变量的内生性,再构造回归系数的指数平方损失估计;针对指数平方损失目标函数,提出选取有效的调节参数估计过程;在一些正则条件下,研究所提出估计的渐近正态性;模拟研究比较了朴素最小二乘估计、朴素M估计、朴素指数平方损失估计、基于工具变量的最小二乘估计、基于工具变量的M估计、基于工具变量的指数平方损失估计等6种估计方法,模拟结果表明:本文提出的基于工具变量的指数平方损失估计有效地消除了协变量的内生性,且具有较好的稳健性;最后,利用本文提出的方法分析了孪生双胞胎“收入-教育程度”的数据。
关键词:  内生变量;工具变量  线性模型  指数平方损失
DOI:
分类号:
基金项目:
Exponential Squared Loss Estimation of Linear Regression Models Using Instrumental Variables
ZHANG Wei,YANG Yi-ping1,2
1. School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, China;2.2. Chongqing Key Laboratory of Social Economy and Applied Statistics, Chongqing Technology and Business University,Chongqing 400067, China
Abstract:
Endogenous variables are often encountered when discussing the relationship between covariates and response variables. Most of the existing researches on endogenous variables are discussed in the framework of least squares objective function. However,this method is not robust. In this paper, the exponential squared loss estimation method is used to construct the robust estimation of regression coefficient in the model. In order to overcome the bias of endogenous variables on the estimation, instrumental variables are used to eliminate the endogeneity of covariates, and then the exponential squared loss estimation of regression coefficients is constructed. For the exponential squared loss objective function, the estimation process of selecting effective adjustment parameters is proposed. Under some regular conditions, the asymptotic normality of the proposed estimator is studied. In the simulation study, six estimation methods are compared, including the naive least squares estimation, the naive M estimation, the naive exponential squared loss estimation, the least squares estimation using instrumental variables, the M estimation using instrumental variables, and the exponential squared loss estimation using instrumental variables. The simulation results show that the proposed method can effectively eliminate the endogeneity of covariates, and has good robustness. Finally, the wage and schooling data collected from the survey of identical twins is analyzed by our proposed method.
Key words:  endogenous variable  instrumental variables  linear model  exponential squared loss
重庆工商大学学报(自然科学版) 版权所有
地址:中国 重庆市 南岸区学府大道19号 重庆工商大学学术期刊社 邮编:400067
电话:023-62769495 传真:
您是第4752854位访客
关注微信二维码