引用本文:崔〓建, 游春芝.平滑l0范数约束的β NMF及其在聚类中的应用(J/M/D/N,J:杂志,M:书,D:论文,N:报纸).期刊名称,2018,35(2):31-35
CHEN X. Adap tive slidingmode contr ol for discrete2ti me multi2inputmulti2 out put systems[ J ]. Aut omatica, 2006, 42(6): 4272-435
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 800次   下载 323 本文二维码信息
码上扫一扫!
分享到: 微信 更多
平滑l0范数约束的β NMF及其在聚类中的应用
崔〓建, 游春芝1
山西医科大学汾阳学院 基础医学部, 山西 吕梁 032200
摘要:
针对基因表达数据噪声大、冗余性较高,传统的NMF算法在基因表达数据聚类中的低效性问题,提出了一种平滑的l0范数约束的〖WTBX〗β〖WTBZ〗散度的矩阵分解与K means相结合的聚类算法,应用到基因表达数据当中;将平滑的l0范数约束引入到基于β散度的矩阵分解的目标函数中,从而提取有用特征信息用于聚类;最后通过实验比较,改进的算法平均聚类精度达到70%,比传统的NMF聚类算法精度提高了11%,聚类效果相较其他方法显著。
关键词:  基因表达数据  β散度  聚类  矩阵分解
DOI:
分类号:
基金项目:
Smooth Lo Norm Constrainedβ-NMF and Its Application to Clustering of Gene Expression Data
CUI Jian, YOU Chun-zhi
Abstract:
Based on high noise and redundancy of gene expression data and that traditional NMF algorithm is inefficient in the clustering of gene expression data, a new clustering method of beta divergence matrix decomposition under the constraint of smooth lo norm and the combination K means is presented, and the new clustering method is applied to gene expression data. The smooth lo norm is introduced into the objective function of matrix decomposition based on beta divergence so as to extract the useful feature information for the clustering. Finally, compared by experiments, the average clustering accuracy of the improved algorithm reaches 70 percent, which is 11 percent higher than that of the traditional NMF clustering algorithm, and clustering effect is more significant than other methods.
Key words:  gene expression data  beta divergence  clustering  matrix decomposition
重庆工商大学学报(自然科学版) 版权所有
地址:中国 重庆市 南岸区学府大道19号 重庆工商大学学术期刊社 邮编:400067
电话:023-62769495 传真:
您是第4752783位访客
关注微信二维码