引用本文:夏欢, 刘辉, 詹隽.基于科研论文合著网络的社区发现算法研究(J/M/D/N,J:杂志,M:书,D:论文,N:报纸).期刊名称,2017,34(5):50-55
CHEN X. Adap tive slidingmode contr ol for discrete2ti me multi2inputmulti2 out put systems[ J ]. Aut omatica, 2006, 42(6): 4272-435
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 875次   下载 333 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于科研论文合著网络的社区发现算法研究
夏欢, 刘辉, 詹隽1
安徽工业大学 计算机科学与技术学院,安徽 马鞍山 243002
摘要:
为了更好地为广大学者阅读文献提供个性化的推荐服务,针对中国知网学术论文发现科研社区,提出了一种科研社区发现算法:首先利用Pajek构建出科研论文合著网络,并将网络公共数据集Dining table partners和Sampson作为测试数据集,对科研社区发现算法和社区发现经典算法GN算法进行性能对比分析,验证科研社区发现算法的性能更优;最后利用算法发现科研社区结构,实验结果表明社区划分的效果较好。
关键词:  科研社区发现算法  科研论文合著网络  性能对比分析  科研社区结构
DOI:
分类号:
基金项目:
Research on Community Detection Algorithm Based on Scientific Research Paper Coauthor Networks
XIA Huan, LIU Hui, ZHAN Juan
Abstract:
Detecting scientific research community based on CNKI’s academic papers could provide personalized recommendation service for reading documents of the majority of scholars. This paper put forward a scientific research community detection algorithm, firstly, established the scientific research paper coauthor network by Pajek, regarded Dining table partners and Sampson of network common data set as testing data set to have a performance comparison and analysis on the scientific research community detection algorithm and classical GN algorithm, verified that the performance of the scientific research community detection algorithm was more superior and finally found scientific research community structure using the algorithm, and the experimental results showed that the effect of community division was pretty good.
Key words:  scientific research community detection algorithm  scientific research paper coauthor network  performance comparison analysis  scientific research community structure
重庆工商大学学报(自然科学版) 版权所有
地址:中国 重庆市 南岸区学府大道19号 重庆工商大学学术期刊社 邮编:400067
电话:023-62769495 传真:
您是第4846752位访客
关注微信二维码