摘要: |
R中的理想I是可消理想的定义,提出在(冯诺依曼)正则算术环中建立可消理想的一个等价刻画;通过映射φ:Lat(R)→Lat(I):对于任意的A∈Lat(R),φ(A)=I∩A,寻找环R和理想I的进一步关系,得出对于任意的0≠e∈Idem(R),存在0≠f∈Idem(I)使得Re=Rf;从而给出完全算术环中可消理想的等价条件:R是一个完全算术环且J(R)=0,那么I是一个可消理想当且仅当对于任意e∈Idem(R),存在f∈Idem(I)使得Re=Rf. |
关键词: 正则环 可消理想 完全不可约理想 完全算术环 |
DOI: |
分类号: |
基金项目: |
|
A Characterization for Cancellation Ideals |
XU Jing wen
|
Abstract: |
As for the definition of an ideal I of a commutative ring R which is called a cancellation ideal, this paper establishes an equivalent characterization for cancellation ideals in a (von Neumann) regular arithmetical ring, uses the map φ:Lat(R)→Lat(I):for any A∈Lat(R),φ(A)=I∩A to study the relationship between R and I, then successfully gets the conclusion that 0≠e∈Idem(R), there exists 0≠f∈Idem(I), such that Re=Rf, therefore gives the equivalent condition for cancellation ideal in completely arithmetical ring: R is a completely arithmetical ring and J(R)=0, then I is a cancellation ideal if and only if for any e∈Idem(R), there exists f∈Idem(I), so that Re=Rf. |
Key words: regular ring cancellation ideal completely irreducible ideal completely arithmetical ring |