摘要: |
通过构建一个迭代算法来求解复矩阵方程组最小〖WTBX〗F范数剩余问题:min〖JB(=〗〖JB((〗〖HL(1〗〖WTHX〗A1XB1+C1X〖TX-〗D1A2XB2+C2X〖TX-〗D2〖WTBX〗〖HL)〗〖JB))〗-〖JB((〗〖HL(1〗〖WTHX〗M1M2〖WTBX〗〖HL)〗〖JB))〗〖JB)=〗,〖JP〗其中〖WTHX〗X〖WTBX〗是埃尔米特双对称矩阵,即满足〖WTHX〗X〖WTBX〗=〖WTHX〗X〖WTBX〗H=〖WTHX〗S〖WTBX〗n〖WTHX〗XS〖WTBX〗n;在不考虑舍入误差的条件下,对于任意双埃尔米特矩阵〖WTHX〗X〖WTBX〗0,矩阵方程组的解都能在有限步内得到;最后,给出一个数值试验来检验算法的有效性. |
关键词: 复矩阵方程 迭代算法 埃尔米特双对称解 |
DOI: |
分类号: |
基金项目: |
|
An Iterative Algorithm for the Hermite Bisymmetric Solution to A Class of Complex Matrix Equations |
HU Zhi zeng, YANG Chun hua
|
Abstract: |
This paper is concerned with an iterative algorithm for solving the minimum Frobenius norm residual problem: 〖WTBX〗min〖JB(=〗〖JB((〗〖HL(1〗〖WTHX〗A1XB1+C1X〖TX-〗D1A2XB2+C2X〖TX-〗D2〖HL)〗〖JB))〗-〖JB((〗〖HL(1〗M1M2〖HL)〗〖JB))〗〖JB)=〗, 〖WT〗where 〖WTHX〗X〖WT〗 is a Hermite bisymmetric matrix which satisfies 〖WTHX〗X=X〖WTBX〗H=〖WTHX〗S〖WTBX〗n〖WTHX〗XS〖WTBX〗n〖WT〗. We can get the solution with finite iteration steps in the absence of roundoff errors for any initial Hermite bisymmetric matrix 〖WTHX〗X〖WT〗0 by this algorithm. Finally, a numerical example is given to illustrate the effectiveness of the proposed method. |
Key words: complex matrix equations iterative algorithm Hermite bisymmetric solution |