摘要: |
利用Leray Schauder度定理,研究具有形式x(n)(t)+f(t,x(1)(t),x(2)(t),…,x(n-1)(t))+〖DD(〗m〖〗i=1〖DD)〗gi(t,x(t-τi(t)))=e(t)的方程,得到了方程反周期解存在唯一性的充分条件;最后举例说明结果的有效性. |
关键词: 偏差变元;Leray Schauder度 反周期解 |
DOI: |
分类号: |
基金项目: |
|
Existence and Uniqueness of Anti Periodic Solutions for a Class of High order Differential Equation with Multiple Deviating Arguments |
XU Jian zhong,ZHOU Zong fu
|
Abstract: |
By using Leray Schauder degree theorem, a class of high order differential equation with multiple deviating arguments as follows:x(n)(t)+f(t,x(1)(t),x(2)(t),…,x(n 1)(t))+〖DD(〗m〖〗i=1〖DD)〗gi(t,x(t τi(t)))=e(t) is studied.A deviating argument on the existence and uniqueness of anti periodic solution is obtained,Anexample is given to illustrate the validity of the results. |
Key words: deviating argument Leray Schauder degree anti periodic solution |