引用本文:蔡玖琳,张磊,张秋三.一种基于数据挖掘的零售业客户细分方法研究(J/M/D/N,J:杂志,M:书,D:论文,N:报纸).期刊名称,2015,32(2):43-48
CHEN X. Adap tive slidingmode contr ol for discrete2ti me multi2inputmulti2 out put systems[ J ]. Aut omatica, 2006, 42(6): 4272-435
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1004次   下载 4054 本文二维码信息
码上扫一扫!
分享到: 微信 更多
一种基于数据挖掘的零售业客户细分方法研究
蔡玖琳,张磊,张秋三1
青岛大学 管理科学与工程学院,山东 青岛 266001
摘要:
针对零售业客户细分指标粗糙和方法精准性低的问题,提出一种基于数据挖掘聚类分析的零售业客户细分方法;方法构建了一套基于RFM的多指标客户细分指标体系,采用熵值法赋予指标权重,进而使用K Means算法进行客户细分;实证研究结果表明:方法在客户行为特征区分能力和聚类紧凑性方面均优于传统基于RFM的细分方法,方法可行、有效,能够更好地解决零售业客户细分问题,提升客户关系管理和营销决策质量.
关键词:  客户细分  RFM  熵值法  K Means
DOI:
分类号:
基金项目:
Research on Customer Segmentation Method in Retail Industry Based on Data Mining
CAI Jiu lin, ZHANG Lei, ZHANG Qiu lan
Abstract:
Due to the problem in the roughness of customer segmentation indicator and low accuracy in retail industry, a customer segmentation method in retail industry is propoesed on the basis of clustering analysis of data mining, and a set of RFM based on multi indicator customer segmentation index system is constructed by using entropy value method to give indicator weight and then by using K Means algorithm to conduct customer segmentation. Empirical research results show that this method is better than the traditional RFM based on segmentation method in the perspective of distinguishing capacity for customer behaviors feature and clustering compactness, and this method, with feasibility and validity, can better solve the problem in customer segmentation in retail industry and improves the customer relation management and marketing decision making quality.
Key words:  customer segmentation  RFM  entropy value method  KMeans
重庆工商大学学报(自然科学版) 版权所有
地址:中国 重庆市 南岸区学府大道19号 重庆工商大学学术期刊社 邮编:400067
电话:023-62769495 传真:
您是第4752695位访客
关注微信二维码