摘要: |
摘 要:著名图论专家Erdês和Neíet il对图的强边着色数上界提出了一个猜想:当Δ为偶数时,χ′s (G)
≤
5
4
Δ2 ;当Δ为奇数时,χ′s (G) ≤
1
4
(5Δ2 - 2Δ + 1) ,他们给出了当Δ = 4的时的最优图. 此处构造了一族图,
并以此证明了当Δ为偶数时,如果Erdês和Neíet il提出的强边着色猜想成立,则猜想中的上界是最优的. |
关键词: 关键词:边着色 强边着色 最优图 |
DOI: |
分类号: |
基金项目: |
|
On the optimum graph of strong edge coloring conjecture |
ZHANGWe i2biao , YANG Qing2jun
|
Abstract: |
Abstract: In 1985, the famous graph theory expert Erdês and Neíet ilconjectured that strong edge2coloring
number of a graph is bounded above by
5
4
Δ2 whenΔ is even and
1
4
(5Δ2 - 2Δ + 1) whenΔ is odd. They gave a
graph ofΔ = 4. In this paper, we construct a series of such graphs. and p rove that if the Strong Edge Coloring Con2
jecture is correct, the boundary number is op timum. |
Key words: Key words: edge coloring strong edge2coloring op timum graph |