2023, 40(5):104-112.
摘要:针对高维数据的建模分析问题,提出一种基于弹性网络法和复合分位数回归相结合的稳健估计方法。 在该估计方法中,所提出的模型能够有效进行变量选择与系数压缩,并处理数据间的多重共线性与群组效应问题,在大数据时代下具有较广的适应性。 同时,与已有的惩罚最小二乘估计和惩罚分位数回归估计相比,该估计方法不仅放宽了对模型误差项的分布要求,而且综合考虑了多个分位点的损失,在面对离群值或呈现尖峰、厚尾分布数据时能够保持更强的稳健性和抗干扰性。 在一定条件下,对所构建模型估计的相合性与稀疏性进行了理论分析,结果表明:所提出的模型能够将不相关的变量完全压缩至零,且估计量和真实系数以趋于 1 的概率相同。 此外,在数值模拟方面,设置了 5 种误差项分布条件,根据设定的 4 项指标,通过与其他惩罚函数模型以及损失函数模型进行比较,结果表明新提出的方法具备更好的稳健性与有效性。
2022, 39(2):68-74.
摘要:大数据时代下收集到的数据常含有异常值或呈现尖峰厚尾以及变量之间具有较强的相关性,针对此问题,结合秩回归和自适应弹性网(Adaptive Elastic-net )提出了一种高效稳健的变量选择方法。此方法的最大优点在于不仅能够有效处理协变量之间的强相关性而且还能克服多重共线性问题,同时能抵抗厚尾分布或异常值的影响,实现稳健的变量选择。在数值计算方面,采用二次近似和牛顿迭代算法以获得新变量选择方法的稳定数值解,仿真实验表明:新提出的方法比现有方法表现更好,特别是对于厚尾分布或异常值的情况。最后,通过对中国重要的股票市场指数——中证100指数的跟踪,进一步表明该方法在有效样本下具有良好的表现。