2018, 35(3):18-25.
摘要:利用中国铁路客运量2005-2016年的月度数据资料,采用乘积季节模型进行建模,对2017年1-6月进行预测;在Eviews和R软件操作下训练与测试数据,分别得到两种乘积季节模型;结果表明:两种软件下客运量的预测误差率均控制在10%以内,两种模型都能较好地预测铁路客运量未来数据的变化情况;通过比较,Eviews建立乘积季节模型,数据分析思维更加严谨,但操作较为复杂,平均预测误差率为4.59%,预测正确率稍低;R软件利用程辑包中相关分析、参数估计与预测函数等,可直接进行分析与预测,操作较为简便,平均预测误差率为3.36%,数据预测正确率较高;通过利用R软件建立ARIMA(2,1,1)×(1,1,1)12模型,此时模型预测精度较好,为预测未来全国铁路客运量变化提供一定的参考价值。