2023, 40(2):64-72.
摘要:针对计算机断层扫描(Computed Tomography, CT)中因采用低剂量扫描方式,导致图像噪声伪影干扰,尤其 是不同部位噪声和伪影强度存在较大差异这一问题,提出了一种基于动态可控残差的卷积神经网络(DC-ResNet) 算法。 DC-ResNet 的主要思想是在常规残差网络连接中添加一个图像质量指导的控制变量,以允许获取残差的加 权和,从而实现残差特征的动态可控。 所设计的 DC-ResNet 网络是一种包括两个子网络的组合型结构,一个是作 为主干网络的基础子网络,在该子网络中使用全局动态残差块和局部动态残差块来实现低剂量 CT 图像质量的提 高;另一个是作为辅助网络的条件子网络,用来生成基础子网络中不同动态可控残差块的权值,辅助基础子网络的 学习。 通过 Mayo 与 UIH 数据实验验证,其视觉结果表明:处理后的不同部位 CT 图像噪声伪影均能够得到较好的 抑制,并能有效地保留结构细节及组织纹理;量化结果表明:处理后的 CT 图像峰值信噪比( Peak-Signal to Noise Ratio, PSNR)和结构相似性(Structure Similarity, SSIM)均优于对比方法。