基于模糊控制的光伏微电网复合储能控制策略优化研究

何飞帆,高文根,於 跃 安徽工程大学 电气工程学院,安徽 芜湖 241000

摘 要:微电网中复合储能的功率分配问题一直是业内研究的热点,以光伏微电网为应用场景,电源功率波动和负 载功率波动在时间上呈现出的非线性特性会对储能系统控制产生影响。针对这一问题,在基于源-荷功率预测的 复合储能控制策略上进行优化,利用模糊算法对非线性问题的处理优势,在储能元件功率分配的情况中加入模糊 控制器,兼顾考虑储能电池 SOC(State of Charge)与微电网功率波动之间的非线性关系,设计微电网预测能量与实 际并网能量的差额分配算法,对储能系统有功率参考值进行实时修正,从而达到调节储能系统 SOC 的效果。实现 了在长时间尺度中,实际并网功率能准确跟踪并网调度,储能元件不会产生过充或过放的现象,从而降低了储能元 件的损坏率,提高了复合储能系统运行的安全稳定性能,延长了储能系统使用寿命的目的。实验结果表明:与优化 前的控制策略相比,在相同工况下优化后的控制策略使蓄电池 SOC 波动范围缩小 15.6%,一直保持在 40%~60% 之间波动。

关键词:光伏微电网;复合储能控制;时间尺度;模糊控制 中图分类号:TM761 文献标识码:A doi:10.16055/j.issn.1672-058X.2023.0003.08

Research on the Composite Energy Storage Control Strategy Optimization of Fuzzy Control-based Photovoltaic Micro-grid

HE Feifan, GAO Wengen, YU yue

School of Electrical Engineering, Anhui University of Technology, Anhui Wuhu 241000, China

Abstract: The power allocation of composite energy storage in microgrid has always been a hot research topic in the industry. Taking photovoltaic microgrid as the application scenario, the nonlinear characteristics of power fluctuation and load fluctuation in time will affect the control of energy storage system. To solve this problem, the composite energy storage control strategy based on source-load power prediction was optimized, and the fuzzy algorithm was used to deal with nonlinear problems. The fuzzy controller was added into the power distribution of energy storage elements by taking into account the nonlinear relationship between energy storage battery SOC and the power fluctuation of the microgrid was designed, and the reference value of active power of the energy storage system was corrected in real time, so as to achieve the effect of regulating the SOC of the energy storage system. In the long-time scale, the actual grid-connected power can accurately track the grid-connected scheduling, and the energy storage elements will not be overcharged or over discharged, thus reducing the damage rate of the energy storage elements, improving the safety and stability of the

收稿日期:2021-03-05 修回日期:2021-05-18 文章编号:1672-058X(2023)03-0056-08

基金项目:安徽省重点研究与开发计划项目(201904A05020007).

作者简介:何飞帆(1996—),男,安徽阜阳人,硕士研究生,从事新能源系统控制与优化研究.

通讯作者:高文根(1973—),男,副教授,博士,从事智能化测控技术、新能源系统控制与优化研究. Email:ahpuchina@ ahpu. edu. cn.

引用格式:何飞帆,高文根,於跃.基于模糊控制的光伏微电网复合储能控制策略优化研究[J].重庆工商大学学报(自然科学版),

^{2023,40(3):56-63.}

HE Feifan, GAO Wengen, YU yue. Research on the composite energy storage control strategy optimization of fuzzy control-based photovoltaic micro-grid[J]. Journal of Chongqing Technology and Business University (Natural Science Edition), 2023, 40(3): 56–63.

composite energy storage system, and prolonging the service life of the energy storage system. The experimental results show that compared with the control strategy before optimization, the fluctuation range of battery SOC can be reduced by 15.6% under the same working conditions, and the fluctuation range remains between 40% and 60%. Keywords: photovoltaic micro-grid; composite energy storage control; time scale; fuzzy control

引 言 1

新型可再生能源已然成为解决能源危机的最佳手 段,伴随着国家对低碳生活的要求和政策,以光能、风 能和水能为代表的一系列可再生能源在电网中所占比 例持续增加,但新能源发电受天气、环境和温度等各方 面影响,导致并网发电功率波动较大,给电网调度方面 带来诸多困难^[1-2]。为了缓解这一棘手问题,以光伏发 电为例,现有的大型光伏电站一般都通过对光伏发电 量进行预测并规划发电计划,再通过竞标的形式获得 并网权。即使如此,由于大型光伏电站的容量很大,向 外输电的工程中存在很多问题,因此在规划与实际情 况出现较大偏差或系统故障等情况时,会出现弃光现 象,严重时甚至会引起电网解列^[3-4]。

复合储能系统主要用于平抑系统中的功率波动, 补偿功率缺额^[5-6]。复合储能系统中的功率分配问题 一直是业内研究的热点,在文献[7]中提出一种在储能 系统独立运行时,根据储能元件 SOC 设计模糊控制器 并通过模糊算法动态的调节下垂系数,但该论文将充 放电过程在长周期内分开讨论,未能考虑到短周期内 储能系统的充放转换:文献[8]根据各时间段电价和用 电需求侧的变化,从宏观方面设计了一种针对光氢储 微网的调度方案,但此方案未考虑新能源发电的不稳 定性所带来的影响;文献[9]提出利用模糊控制和加权 移动平均滤波算法对权重系数和滤波带宽进行实时调 整,以此来达到自动调整储能系统 SOC 的目的,但由于 其控制方式为实时控制,可能会造成储能系统充放次 数频繁,缩短储能系统设备的使用寿命;文献[10]提出 一种摒弃滤波方式,只根据超级电容 SOC 大小分配能 量的方法,以此来消除使用滤波器带来的功率波动,但 该方法更容易造成单个储能元件在长周期内频繁充放 电,加速其元件损坏,缩短储能元件使用寿命。

文献[11]提出了一种基于能量预测的光伏微电网 复合储能控制策略方法,首先在光伏和负载能量预测 的基础上制定并网调度计划,再根据实际并网调度与 计划并网调度的误差对储能系统进行调控,但该研究 将能量差额平均分配给储能系统,没有考虑微电网功 率波动的非线性特性。本文在该文献的控制方法基础 上,综合考虑微电网功率波动的非线性特性,在预测能 量与实际能量的误差分配环节加入模糊控制器,通过 模糊控制对误差进行实时的分配以此来防止储能系统 SOC 越限,并实现蓄电池与超级电容的参考功率优化 分配。仿真结果表明,经过模糊控制后的储能元件输 出功率符合其特性,在长时间尺度上,实际并网功率能 准确跟踪并网调度,蓄电池 SOC 保持在百分之五十左 右波动,避免储能系统过充(过放)问题,提高了复合储 能系统的鲁棒性。

2 含复合储能的光伏微电网结构

2.1 微电网简介

微电网(Micro-grid)又可称为微网,其结构是由电 网和分布式发电单元组成电源,发电单元通过能量转 换器将电量输入到母线,同时再由母线通过转换器将 电能输送到用户。当发生特殊情况时,微电网不仅可 以选择并网运行,还可以选择脱离电网进行离网运行。 因此,微电网不仅可以解决大规模的分布式发电单元 并联接入问题,而且还可以充分发挥其优势,在面对大 规模紧急情况中发挥充分作用。微电网将从根本上改 变传统的应对负荷增长的方式,在降低能耗、提高电力 系统可靠性和灵活性方面具有巨大潜力^[12]。

微电网可以根据其运行方式的不同分为以下两种 模式:并网模式和离网模式。并网模式下的微电网由 发电单元、负荷单元、控制单元、储能单元以及电网所 组成。当微电网对电网的渗透率较低的情况下时,电 网可以作为备用电源填补能量。但由于微电网内部的 电源和负荷具有不确定性,故当电网中的微电网数量 逐渐增大时,将会影响电网的稳定性。离网模式下的 微电网失去了电网的支撑,其电源与负荷的功率平衡 将由微电网自身来调节。但由于微电网体量较小,很容 易引发电压过小、超频等现象,从而导致系统失稳。加入 了新型可再生能源的微电网由于可再生能源受到环境与 地理位置等因素的影响,其发电量具有随机性。同时,由 于微电网中的负荷也具有随机性,因此由储能系统对微 电网功率调节成为平衡源荷功率的重要途径。

2.2 复合储能系统组成

当电源提供能量不足以满足负载消耗时,储能系

统放电补足空缺;同理,当电源提供能量大于负载消耗 时,储能系统吸收能量并储存。储能系统可以按照其 功能划分为两类,即功率型储能与能量型储能(如超级 电容和磷酸铁锂电池等)。功率型储能主要是满足微 电网系统功率调节需求,要求储能电池功率密度高、响 应速度快、允许频繁充放电;能量型储能主要是微电网 系统的能量吞吐需求,要求储能电池能量密度大^[13]。 本文选择以超级电容和磷酸铁锂电池所组成的复合储 能系统(表1),超级电容作为功率型储能电池具有响应 时间快,响应时间短,可频繁充放电等特点,可用于微 电网的瞬态功率调整,维持电压和频率的稳定;磷酸铁 锂电池作为能量型储能具有价格便宜、功率密度大、响 应速度与超级电容形成互补等特点,主要用于满足微 电网各单元功率调节需求。

表1 复合储能系统两种电池功能划分

 Table 1
 Function division of two kinds of batteries

in composite energy storage system

储能类型	响应速度	响应时长	充放切换	主要作用
超级电容	毫秒级	数秒~数分钟	可频繁切换	功率调节
磷酸铁	<i><i>±</i>]-<i>lm</i></i>	数分钟~	尽可能减少	兼顾功率调节
锂电池	初级	数小时	切换频率	与能量吞吐

2.3 光伏-储能-负荷微电网结构

光伏微电网系统由光伏发电单元、储能单元和负 荷三部分组成,其结构可根据不同的能量转换方式分 为直流型、交流型和混合型。直流型微电网是通过直 流母线将电源、储能和负载三者相连,然后通过直流母 线直接进行能量转换;交流型微电网采用交流总线,实 现电源、储能、负载互联和能量转换;混合型微电网采 用内部直流总线将产生的直流电通过 AC/DC 逆变器 转化为交流电输出到交流母线中。本文采用并网模式 下的交流型光伏微电网,相对于直流型和混合型而言, 交流型投入成本更低,结构相对简单,性价比更高。如 图1所示,分布式光伏发电单元由逆变器将产生的直 流电逆变为交流电输出到交流母线;直流母线通过电 源转换系统(Power Conversion System, PCS)连接到交 流母线,交流母线通过耦合(Point of Common Coupling, PCC)开关连接到电源变压器,然后通过变压器连接到 电网。微电网通过 PCC 点与电网交换电能,交流和直 流总线通过 PCS 交换电能。通过控制混合储能能量的 放电,稳定直流侧光伏发电和交流侧负载功率的波动。 复合储能单元由超级电容和蓄电池组成,通过 PCS 并 联到交流母线,放电状态下通过功率变换系统将蓄电 池中的直流电转换成交流电输出到交流母线;充电状态 下通过功率变换系统将交流母线中的交流电转换为直流 电储存在蓄电池当中;负载直接并联到交流母线当中。

Fig. 1 Structure diagram of photovoltaic, energy storage and load microgrid

光伏微电网中的各单元关系如图 1 所示, P_{pvi} 为光 伏微电网各支路发电单元,其中 $i \in [1,n]$, P_{lj} 为负荷 单元用电功率,其中 $j \in [1,m]$, P_g 为实际并网功率, P_c 为超级电容输出功率, P_b 为蓄电池输出功率; P_{pv} 为各 支路光伏发电功率之和,其对应的光伏预测值为 P_{pvp} ; P_L 为光伏微电网中负荷元件消耗的总功率,其对应的 负荷预测值为 P_{Lp} ;同时,记光-荷的预测值之和为 P_{pp} , 其实际值为 P_{po} 。

3 基于能量预测与跟踪并网调度的复合储能 控制策略

3.1 光伏微电网中复合储能系统的控制方法

此方案首先根据光伏发电量的预测值和负荷的预测值,计算出以一天(1 d)为周期的并网功率预测值; 其次,获取并网计划调度曲线,再以小时(h)为周期更 新能量预测值反馈到并网计划,通过控制储能系统进 行充放电来平抑功率波动误差;最后,实现光伏微电网 跟踪并网调度计划的控制目标。

由于并网调度计划与预测值的误差受到环境、天 气等各种不确定因素的影响,所以其数值处于实时波 动的状态。为了减少储能系统充放次数,针对并网调 度计划与预测值的误差值设置一个误差带。当并网调 度计划与预测值的差值没有超过误差取值范围时,储 能系统不工作;当误差超过允许误差且实际并网功率 大于调度并网功率时,储能系统进行充电吸收多余能 量;同理,当误差超过允许误差且实际并网功率小于调 度并网功率时,储能系统放电补偿并网功率。

59

假设交直流能量转化中不存在损耗,则令光伏微 电网跟踪电网调度的计划并网功率为 P_s ,为了实现电 网调度目标,需要跟踪计划并网功率输出,通过控制复 合储能输出功率来平抑功率偏差 ΔP ,则有:

$$P_g = P_{PVp} + P_{Lp}$$
$$\Delta P = P_S - P_p = P_S - P_{PV} - P_L$$

为了实现并网调度目标,有必要跟踪规划的并网 发电量,并通过控制混合储能装置的输出功率来稳定 功率偏差,然后存在:

$$P_H = P_S - P_G = P_S - P_L + P_P$$

当 *P_H*>0 时,表示实际并网功率大于计划并网功 率,此时储能系统应通过充电来吸收多余的电量;当 *P_H*=0 时,表示实际并网功率等于计划并网功率,此时 储能系统不工作;当 *P_H*<0 时,实际并网功率小于计划 并网功率,控制储能系统放电补足偏差。

3.2 光伏微电网复合储能系统控制流程

基于能量预测与并网调度计划的复合储能控制方 案如图 2 所示。根据光伏和负荷一天的预测值,结合 蓄能系统状态来制定并网调度计划,电网根据调度计 划进行放电。再将每日预测值和实际电网调度总量分 解成以小时为周期,再将得到预测值与实际调度值做 对比,得到以小时为周期的差值 $\Delta E_{p,h}$,最后由储能系统 进行充放电对差值平抑补缺。与此同时,将差值 $\Delta E_{p,h}$ 以小时为周期滚动预测下一个周期的能量状态,实际 并网根据所得差值进行补缺,以此来修正日预测误差 获得更加准确的储能功率修正参考值,达到更佳的控 制目标。图 2 中 T_d 表示为以 1 d 为周期; T_h 表示为以 小时为周期; $E_{p,d}$ 表示为 1 d 的光伏与负荷能量预测 值; $\Delta E_{p,h}$ 为以小时为周期实际电网输出值与光-荷能 量预测值的误差。

Fig. 2 Control process of photovoltaic microgrid composite energy storage system

3.3 跟踪并网调度的复合储能系统能量控制策略 由图 2 可知,并网调度 1 d 内(*T_d*)能量预测值为

$$E_{p,d} = \int_{0}^{T_{d}} \left[P_{PVp}(t) + P_{Lp}(t) \right] dt$$

 $1 h(T_h)$ 内的并网能量预测值为

$$E_{p,h} = \int_{0}^{T_{h}} \left[P_{PVp}(t) + P_{Lp}(t) \right] dt$$

实际需要的并网能量为

$$E_{S,h} = \int_0^{T_h} P_S(t) \, \mathrm{d}t$$

根据光伏微电网能量预测值和实际并网能量值, 预计未来调度周期内的产生的能量误差为

$$\Delta E_{p} = E_{S,h} - E_{p,h} = \int_{0}^{T_{h}} \left[P_{S}(t) - P_{PVp}(t) - P_{Lp}(t) \right] dt$$

在文献[11]中,针对能量差额 ΔE_p ,采用按时间平 均分配到调度周期的方式,即:

$$\begin{cases} P_{\text{Cref}}^{*}(t) = P_{\text{Cref}}(t) - k_{c} \frac{\Delta E_{p}}{T_{d}} \\ P_{\text{Bref}}^{*}(t) = P_{\text{Bref}}(t) - k_{b} \frac{\Delta E_{p}}{T_{d}} \\ 1 = k_{c} + k_{b} \end{cases}$$
(1)

式(1)中,k。为超级电容分配系数,k。为蓄电池分配系数。根据调度周期T。和分配系数,将能量差额平均分配给储能系统。由于采用均值算法没有考虑微电网系统功率波动的非线性特性,尤其是蓄电池的SOC非线性特性,可能会导致储能系统出现过充或过放现象,从而造成储能系统元件的损坏,例如:当储能系统SOC较低时,系统仍处于放电状态,由于线性算法的缘故使得储能元件无法根据自身状态来调整放电量,从而导致储能元件产生过放现象而退出系统;同理,当储能系统SOC较高时,系统仍处于充电状态,由于无法自动调整充电量,从而导致储能元件产生过充以至于导致微电网弃光现象的产生。故在此基础上加入模糊控制器,在考虑储能元件SOC状态的同时,对功率修正系数进行实时调控。

4 模糊控制优化的储能系统控制策略

4.1 模糊控制在复合储能系统上的应用

当实际并网调度与光-荷预测值出现差值时,需要 储能系统介入平抑或补充差额。由于超级电容和蓄电 池组成的储能系统本身具有容量限制,所以必须要考 虑储能元件本身的荷电状态。

为了保证储能元件处于安全运行的状态,本文提 出了一种以模糊控制为基础,可以实时监控并修正超 级电容和蓄电池功率参考值的系统,更适合于解决系 统运行过程中的非线性问题。

模糊控制流程如图 3 所示:首先,确定输入输出物

理量;其次,确定模糊子集的隶属函数并制定模糊控制 规则;最后,将得到的模糊值通过清晰化处理得到输出 清晰量。

图 3 模糊控制策略设计流程

Fig. 3 Design process of fuzzy control strategy

加入模糊控制的作用:当储能元件容量即将到达限定容量,储能元件依旧保持充电或放电状态时,适当的调整功率参考值,避免储能元件因为过充或过放而 造成损坏,提高储能系统的使用寿命。

4.2 复合储能系统模糊控制策略

在运用模糊控制之前,需要先表示出各储能元件的 SOC 值以及功率充放状态。由式(1)可知,蓄电池分配系数和超级电容分配系数互补,因此此处取蓄电池 为例。

在应用模糊控制之前,需要先将蓄电池有功功率 输出和荷电状态 SOC 进行归一化处理,蓄电池 SOC 归 一化方程表示如下^[14]:

$$\varepsilon_{b}(t) = \frac{2(S_{b}(t) - S_{b,ref})}{S_{b,max} - S_{b,min}}$$

其中, $S_{b,ref}$ 为蓄电池 SOC 的期望值, $\varepsilon_b(t)$ 的论域为[-1,1],取极端值说明:当 $\varepsilon_b(t)$ =-1时,表示蓄电池处于枯竭状态;当 $\varepsilon_b(t)$ =1时,表示蓄电池处于饱和状态。

有功功率参考值隶属度表示如下[15]:

$$\eta_{b}(t) = \begin{cases} \frac{1}{\hat{P}_{b}^{+}} \min\{P_{b}^{t}, \hat{P}_{b}^{+}\} P_{b}^{t} \ge 0\\ -\frac{1}{\hat{P}_{b}^{-}} \min\{|P_{b}^{t}|, \hat{P}_{b}^{-}\} P_{b}^{t} < 0 \end{cases}$$

其中, P_b^+ 和 P_b^- 为储能系统有功功率上下限。 $\eta_b(t)$ 的 论域为[-1,1],同样取极端值说明:当 $\eta_b(t) = -1$ 时, 储能系统在以规定范围内的最大功率输出;当 $\eta_b(t) = 1$ 时,储能系统在以规定范围的最大功率充能。

目前,确定隶属度函数的常用方法有多种,本文采 用最常用的专家经验法,根据专家实际经验给出的模 糊信息,初步确定粗略的隶属函数,再进行多次试验, 根据实际效果进行修正和调整隶属函数。

如图 4 所示,将 $\varepsilon_b(t)$ 和 $\eta_b(t)$ 作为两个输入连接 到模糊控制器两个输入接口,取两者论域为[-1,1],其 输入模糊集合表示为{NB,NS,ZO,PS,PB},分别代表 储能系统中蓄电池的 SOC 含量为:低、较低、适中、较高、 高。其模糊控制器输出值为功率修正值,记为 $k_b(t)$,将 其离散论域定义为[-1,-0.6,-0.3,0,0.3,0.6,1],模糊 子集为[NB,NM,NS,ZE,PS,PM,PB]。

本文的模糊规则主要根据以下几条原则设计:当蓄 电池的 SOC 含量较小,且蓄电池放电功率仍处于较大 时,则减小有功功率输出值,避免过放现象的产生;当蓄 电池 SOC 处于中间值时,按照功率参考值进行补偿;当 蓄电池 SOC 较大时,而蓄电池仍处于充电状态,则减小 有功功率输入值,避免过充现象的产生。根据以上理论, 得出输入隶属函数(图4)和输出隶属函数(图5)。

If $\varepsilon_{h}(t)$ is ZO and $\eta_{h}(t)$ is ZO, then $k_{h}(t)$ is ZE.

规则表明:当蓄电池中 SOC 含量与参考值含量相 差适中(ZO),且蓄电池有功功率参考值与有功功率 实际值相差适中时(ZO),此时蓄电池修正系数输出 为0(ZE)。除此以外,考虑蓄电池本身特性,当蓄电 池荷电状态处于适中范围时,可适当增大其充电或放 电功率。

表 2 控制规则表						
		Table 2	Control rule	es		
$c_{1}(t)$	$\eta_b(t)$					
$\mathcal{E}_b(l)$	NB	NS	ZO	\mathbf{PS}	PB	
NB	ZE	NS	NM	NB	NB	
NS	ZE	ZE	NS	NM	NB	
ZO	\mathbf{PS}	ZE	ZE	ZE	NS	
\mathbf{PS}	PB	PM	\mathbf{PS}	ZE	ZE	
PB	PB	PB	PM	ZS	ZE	

由于得到的输出值为模糊变量,因此需要进行清晰化处理:清晰化计算通常有加权平均法(重心法),最大隶属度法,和中位数法等。本文采用重心法对输出的模糊集合进行清晰化处理,得到实时功率修正数据 k_b(t),从而得到储能设备功率修正值为

 $\Delta P_{b}(t) = k_{b}(t) \Delta P^{b}$

4.3 模糊控制下的复合储能系统能量调控

根据文献[11]可知:工作状态下,蓄电池放电/充 电的 SOC 的表达公式为

$$SOC(t+T) = SOC(t) + \frac{P_{fa}TS_n}{\mu_f}$$
(2)

$$SOC(t+T) = SOC(t) + \frac{P_{ch}T\mu_c}{S_n}$$
(3)

其中,T为 SOC 更新周期; P_{fa} 为放电功率; P_{ch} 为充电 功率; μ_e 为充电效率; S_n 为额定容量; μ_f 为放电效率。

将储能设备功率修正值加入式(2)中,得到在放电 状态下,蓄电池的放电有功功率参考值为

$$\begin{cases} P_{fa, Bref}^{*} = \frac{\mu_{fb} \left[SOC_{b}(t+T) - SOC_{b}(t) \right]}{TS_{nb}} \times \left[1 + k_{b}(t) \right] \\ P_{fa, Cref}^{*} = \frac{\Delta E_{p}}{T_{h}} - P_{fa, Bref}^{*} \end{cases}$$

将储能设备功率修正值加入式(3)中,得到在充电 状态下,蓄电池的充电有功功率参考值为

$$\begin{cases} P_{ch, Bref}^{*} = \frac{S_{nb} [SOC_{b}(t+T) - SOC_{b}(t)]}{T \mu_{cb}} \times [1 + k_{b}(t)] \\ P_{ch, Cref}^{*} = \frac{\Delta E_{p}}{T_{h}} - P_{ch, Bref}^{*} \end{cases}$$

同时,储能元件的充放电功率应该保持在其元件 规定的范围内。因此,为了保证储能元件的充放功率 保持在允许的范围内,应对其功率加以约束条件来保 证系统的安全:

$$\begin{cases} |P_{c}| \leq |P_{c,\max}| = \min(P_{c\max}, P_{Cref}^{*}) \\ |P_{b}| \leq |P_{b,\max}| = \min(P_{b\max}, P_{Bref}^{*}) \end{cases}$$

5 仿真分析

基于上述理论,本文在仿真软件 MATLAB/Simulink

中搭建模型并进行仿真分析。在本文的算例中,储能元件的允许充电(放电)深度设为0%~100%,SOC初始值设定为50%,仿真时间尺度为24h,光伏能量预测和负荷能量预测以1h为周期滚动更新。仿真参数如表3所示,储能元件容量配置方案如表4所示。

表 3 仿真参数 Tabel 3 Simulation parameters

参 数	取值	参数	取值
光伏阵列电压/V	690	超级电容电压/V	520
蓄电池电压/V	520	逆变器转换效率/%	96.5
直流母线电压/V	850	系统频率/Hz	49
负载额定功率/kW	96	并网口功率/kW	60

表 4 储能容量配置方案

Table 4 Configuration scheme of energy storage capacity

类 别	参数	取 值
	额定功率/kW	120
蓄电池	容量/kW・h	411
	初始 SOC/%	50
切切中穴	额定功率/kW	63
超级电谷	容量/kW・h	5

通过仿真验证复合储能控制策略的有效性,得到 超级电容与蓄电池的功率如图 6 所示,超级电容充放 次数大于蓄电池充放次数,蓄电池的充放功率大于超 级电容,符合超级电容和蓄电池功率特性。

由图 7 可知,光伏微电网实际并网功率曲线 P_g能够跟踪并网调度曲线 P_s。且由于超级电容由于本身元件的物理特性,使其响应时间更短,可进行频繁的充放

电,因此利用低通滤波器将波动功率中分解后的高频 分量由超级电容平抑;由于蓄电池输出功率缓慢,承担 功率较大,因此可用来补偿波动功率中的低频分量。

Fig. 7 Actual grid-connected power tracking grid-connected dispatching curve

图 8 为 1 d 时间内负荷功率变化图。以蓄电池为 例,为验证模糊控制对 SOC 控制的时效性和调节的有 效性,图 9 为蓄电池未经过模糊控制的 SOC 变化曲线, 图 10 为蓄电池经过模糊控制优化后的 SOC 变化曲线, 图 11 为蓄电池经过模糊控制时的功率修正曲线。

Fig. 9 Change curve of battery SOC before optimization

Fig. 11 Modification factor of battery power

由图 10 可知,模糊控制下的蓄电池 SOC 值在 50% 左右波动,当蓄电池 SOC 达到设定的敏感区域时能够 及时的进行功率修正,使得 SOC 保持在合理的位置,防 止蓄电池过充过放。

6 结 论

选择了一种以能量预测为基础,跟踪并网调度的 复合储能控制策略,此策略实现了在更长时间尺度上 稳定响应系统的控制需求。在此储能控制控制策略的 基础上进行优化,利用模糊算法对非线性问题处理优 势,在储能元件功率分配的情况中加入模糊控制器。 兼顾考虑储能电池 SOC 的非线性特性,设计微电网预 测能量与实际并网能量的差额分配算法,对储能系统 有功功率参考值进行实时修正,从而达到调节储能系 统 SOC 的效果。实现在长时间尺度中,实际并网功率 能准确跟踪并网调度的情况下,储能元件不会产生过 充或过放的情况,降低了储能元件的损坏率,提高了复 合储能系统运行的安全稳定性能,延长了储能系统的 使用寿命。仿真结果表明,与优化前的控制策略相比, 在相同工况下优化后的控制策略使蓄电池 SOC 波动范 围缩小 15.6%,一直保持在 40%~60%之间波动。

参考文献(References):

 [1] 颜晨煜, 樊艳芳. 多场景下光伏双单元储能系统协同平抑 功率波动控制策略[J]. 可再生能源, 2020, 38(2):164— 171.

YAN Cheng-yu, FAN Yan-feng. Cooperative control strategy for suppressing power fluctuations of photovoltaic dual-unit energy storage systems in multiple scenarios [J]. Journal of Renewable Energy, 2020, 38(2): 164—171.

 [2] 王林川,高云鹏. 平抑光伏出力波动的混合储能系统控制 策略设计[J]. 电测与仪表, 2015, 52(14):49—54.
 WANG Lin-chuan, GAO Yun-peng. Design of control strategy for hybrid energy storage system to suppress fluctuations in photovoltaic output[J]. Electrical Measurement & Instrumentation, 2015, 52(14): 49—54.

- [3] YANG X, SONG Y, WANG G, et al. A comprehensive review on the development of sustainable energy strategy and implementation in China[J]. IEEE Transactions on Sustainable Energy, 2010, 1(2): 57—65.
- [4] 翟桥柱,周玉洲,李轩,等.非预期性与全场景可行性:应 对负荷与可再生能源不确定性的现状,挑战与未来[J].中 国电机工程学报,2020,40(20):11—26.

ZHAI Qiao-zhu, ZHOU Yu-zhou, LI Xuan, et al. Unexpectedness and feasibility of all scenarios: dealing with the current status, challenges and future of load and renewable energy uncertainties[J]. Proceedings of the Chinese Society for Electrical Engineering, 2020, 40(20): 11-26.

[5] 张野,郭力,贾宏杰,等.基于电池荷电状态和可变滤波时
 间常数的储能控制方法[J].电力系统自动化,2012,36
 (6):34—38.

ZHANG Ye, GUO Li, JIA Hong-jie, et al. An energy storage control method based on state of charge and variable filter time constant[J]. Automation of Electric Power Systems, 2012, 36 (6): 34—38.

[6] 孙泽伦,陈洁,滕扬新,等.基于混合储能平抑风电波动的 负反馈分层模糊控制策略[J].电力电容器与无功补偿, 2019,40(4):176—182.

SUN Ze-lun, CHEN Jie, TENG Yang-xin, et al. Negative feedback hierarchical fuzzy control strategy based on hybrid energy storage wind power fluctuation suppression[J]. Power Capacitor & Reactive Power Compensation, 2019, 40: (4) 176—182.

- [7] 黄翔,李留根. 基于模糊控制的直流微电网 SOC 均衡控制
 策略[J]. 电力学报, 2019, 34(4): 375—381.
 HUANG Xiang, LI Liu-gen. Fuzzy control based SOC equalization control strategy for DC microgrid[J]. Journal of Electric Power, 2019, 34(4): 375—381.
- [8] 梁芷睿,宋政湘,王建华,等.光氢储混合微电网的优化设计与调度软件开发[J].电力电容器与无功补偿,2018,39
 (5):172—177.

LIANG Zhi-rui, SONG Zheng-xiang, WANG Jian-hua, et al. Optimal design and dispatching software development for hybrid PV-hydrogen-battery micro-grid[J]. Power Capacitor & Reactive Power Compensation, 2018, 39(5): 172—177.

[9] 丁明, 吴建锋, 朱承治, 等. 具备荷电状态调节功能的储能
 系统实时平滑控制策略[J]. 中国电机工程学报, 2013, 33
 (1): 22—29.
 DING Ming, WU Jian-feng, ZHU Cheng-zhi, et al. A real- time

smoothing control strategy with SOC adjustment function of storage systems [J]. Proceedings of the CSEE, 2013, 33(1): 22–29.

- [10] 丁若星,肖曦,王奎,等. 混合储能系统基于荷电状态的功率分配方法[J]. 电力电子技术,2015,49(3):25—26.
 DING Ruo-xing, XIAO Xi, WANG Kui, et al. A power sharing strategy based on SOC for hybrid energy storage system[J].
 Power Electronics, 2015, 49(3):25—26.
- [11] GAO Wen-gen, YU Yue, WANG Ning, et al. Hybrid energy storage control strategy based on energy prediction for photovoltaic microgrid[C]//40th Chinese Control Conference: (CCC). IEEE, 2021: 230—236.
- [12] BAUE T S, VASUDEVAN K R, et al. A comprehensive review of hybrid energy storage systems: converter topologies, control strategies and future prospects [J]. IEEE Access, 2020, 99: 1.
- [13] 吕超贤,李欣然,户龙辉,等.基于小波分频与双层模糊控制的多类型储能系统平滑策略[J].电力系统自动化, 2015,39(2):21—29.

LU Chao-xian, LI Xin-ran, HU Long-hui, et al. Multi-type energy storage system smoothing strategy based on wavelet frequency division and double-layer fuzzy control [J]. Automation of Electric Power Systems 2015, 39(2): 21–29.

- [14] 谢石骁,杨莉,李丽娜. 基于机会约束规划的混合储能优化 配置方法[J]. 电网技术, 2012, 36(5): 79—84.
 XIE Shi-xiao, YANG Li, LI Li-na. Optimal allocation method of hybrid energy storage based on chance-constrained programming[J]. Power System Technology, 2012, 36(5): 79—84.
- [15] 付皓. 基于微电网的并联逆变器控制系统的研究[D]. 东 北大学, 2010.

FU Hao. Research on parallel inverter control system based on microgrid[D]. Northeastern University, 2012.