文章编号:1672-058X(2012)10-0011-05

关于 Pell 方程 $ax^2 - mqy^2 = \pm 1$ ($m \in Z^+$, $2 \mid a$, $q \equiv \pm 1 \pmod{4}$ 是素数)*

杜先存1,万飞1,赵金娥2

(1. 红河学院 教师教育学院,云南 蒙自 661199;2. 红河学院 数学系,云南 蒙自 661199)

摘 要:Pell 方程 $ax^2 - by^2 = \pm 1$ ($a,b \in Z^+$, a,b 不是完全平方数) 可解性的判别是一个非常有意义的问题. 运用 Legendre 符号和同余的性质给出了形如 $ax^2 - mqy^2 = \pm 1$ ($m \in Z^+$, $2 \mid a,q \equiv \pm 1 \pmod{2}$) 是素数, a,m,q 是非完全平方数) 型 Pell 方程无正整数解的几个结论. 这些结论对研究狭义 Pell 方程 $x^2 - Dy^2 = \pm 1$ (D 是非平方的正整数)起了重要作用.

关键词: Pell 方程;正整数解;素数;同余;Legendre 符号

中图分类号:0156.1

文献标志码:A

关于 Pell 方程 $ax^2 - by^2 = 1$ 的整数解问题,文献[1]-[4]已有一些结果,此处旨在探讨 $ax^2 - mqy^2 = \pm 1$ ($m \in \mathbb{Z}^+$, $q \equiv \pm 1 \pmod{4}$)是素数,a 为偶合数,a,m,q 是非完全平方数)型 Pell 方程的解的情况.

1 主要结论

定理 1 Pell 方程
$$2\prod_{i=1}^{2s+1} p_i x^2 - mqy^2 = 1 (m \in Z^+, q \equiv \pm 1 \pmod{8})$$
 是素数 p_i 为奇素数 $\mathbb{E}\left(\frac{p_i}{q}\right) = -1 (i = 1, 2, \dots, 2s + 1)$) 无正整数解.

定理 2 Pell 方程
$$2 \prod_{i=1}^{s} p_i x^2 - mqy^2 = 1 (m \in Z^+, q \equiv \pm 3 \pmod{8})$$
 是素数, p_i 为奇素数,且 $\left(\frac{p_i}{q}\right) = 1 (i = 1)$

 $1,2,\dots,s))$ 无正整数解.

定理 3 Pell 方程
$$2\prod_{i=1}^{2s+1}p_ix^2 - mqy^2 = -1(m \in Z^+, q \equiv 1,3 \pmod{8})$$
 是素数, p_i 为奇素数,且 $\left(\frac{p_i}{q}\right) = -1(i=1,2,\cdots,2s+1)$) 无正整数解.

定理 4 Pell 方程
$$2 \prod_{i=1}^{s} p_i x^2 - mqy^2 = -1 (m \in Z^+, q \equiv -1, -3 \pmod{8})$$
 是素数, p_i 为奇素数,且 $\left(\frac{p_i}{q}\right) = -1$

 $1(i = 1, 2, \dots, s))$ 无正整数解.

定理 5 Pell 方程
$$2\prod_{i=1}^{2s+1}p_i\cdot\prod_{j=1}^{t}q_jx^2-mqy^2=1 (m\in Z^+,q\equiv\pm1 (\bmod 8)$$
 是素数, p_i,q_j 为奇素数,且

收稿日期:2012-03-22;修回日期:2012-04-17.

作者简介:杜先存(1981-),女,云南凤庆人,讲师,硕士,从事数学教育及初等数论研究.

^{*}基金项目:云南省教育厅科研基金(2011C121).

$$\left(\frac{p_i}{a}\right) = -1(i = 1, 2, \dots, 2s + 1), \left(\frac{q_j}{a}\right) = 1(j = 1, 2, \dots, t)$$
) 无正整数解.

定理 6 Pell 方程 $2\prod_{i=1}^{2s+1}p_i \cdot \prod_{j=1}^{t}q_jx^2 - mqy^2 = -1(m \in Z^+, q \equiv 1, 3 \pmod{8})$ 是素数, p_i , q_j 为奇素数,且 $\left(\frac{p_i}{q}\right) = -1(i = 1, 2, \cdots, 2s + 1)$, $\left(\frac{q_j}{q}\right) = 1(j = 1, 2, \cdots, t)$) 无正整数解.

2 定理证明

2.1 定理1证明

证明 对 Pell 方程

$$2\prod_{i=1}^{2s+1}p_ix^2 - mqy^2 = 1 \tag{1}$$

两边取模 q 得:

$$2\prod_{i=1}^{2s+1} p_i x^2 \equiv 1 \pmod{q}$$
 (2)

若式(1)有正整数解,则式(2)有解,故有模 q 的 Legendre 符号值 $\left(2\prod_{i=1}^{2^{r+1}}p_i\right)=1$. 因 $q\equiv\pm1\pmod{8}$,则 $\left(\frac{2}{q}\right)=1$

1. 又
$$\left(\frac{p_i}{q}\right) = -1(i = 1, 2, \dots, 2s + 1)$$
,则 $\left(\frac{\prod\limits_{i=1}^{2s+1}p_i}{q}\right) = -1$,故 $\left(\frac{2\prod\limits_{i=1}^{2s+1}p_i}{q}\right) = \left(\frac{2}{q}\right) \cdot \left(\frac{\prod\limits_{i=1}^{2s+1}p_i}{q}\right) = -1$,矛盾. 所以式(1) 无正整数解.

2.2 定理2证明

证明

$$2\prod_{i=1}^{s} p_i x^2 - mqy^2 = 1 \tag{3}$$

两边取模 q 得:

$$2\prod_{i=1}^{s} p_i x^2 \equiv 1 \pmod{q} \tag{4}$$

若式(3)有正整数解,则式(4)有正整数解,故有模 q 的 Legendre 符号值 $\left(\frac{2\prod p_i}{q}\right) = 1$. 因 $q \equiv \pm$

$$3 \left(\bmod 8 \right), 则 \left(\frac{2}{q} \right) = -1. \ \mathbb{Z} \left(\frac{p_i}{q} \right) = 1 \left(i = 1, 2, \cdots, s \right), 则 \left(\frac{\prod\limits_{i=1}^{s} p_i}{q} \right) = 1, 故 \left(\frac{2\prod\limits_{i=1}^{s} p_i}{q} \right) = \left(\frac{2}{q} \right) \cdot \left(\frac{\prod\limits_{i=1}^{s} p_i}{q} \right) = -1, 矛盾.$$

所以式(3)无正整数解.

2.3 定理3证明

证明

$$2\prod_{i=1}^{2s+1}p_ix^2 - mqy^2 = -1 \tag{5}$$

两边取模 q 得:

$$2\prod_{i=1}^{2s+1} p_i x^2 \equiv -1 \,(\bmod q) \tag{6}$$

若式(5)有正整数解,则式(6)有正整数解,故有模 q 的 Legendre 符号值 $\left(\frac{-2\prod\limits_{i=1}^{2s+1}p_i}{q}\right)=1$.

当
$$q \equiv 1 \pmod{9}$$
 时, $\left(\frac{-1}{q}\right) = 1$, $\left(\frac{2}{q}\right) = 1$,则 $\left(\frac{-2}{q}\right) = \left(\frac{-1}{q}\right) \cdot \left(\frac{2}{q}\right) = 1$.

当
$$q \equiv 3 \pmod{8}$$
 时, $\left(\frac{-1}{q}\right) = -1$, $\left(\frac{2}{q}\right) = -1$,则 $\left(\frac{-2}{q}\right) = \left(\frac{-1}{q}\right) \cdot \left(\frac{2}{q}\right) = 1$.

又
$$\left(\frac{p_i}{q}\right) = -1(i=1,2,\cdots,2s+1)$$
,则 $\left(\frac{\prod\limits_{i=1}^{2s+1}p_i}{q}\right) = -1$,故 $\left(\frac{-2\prod\limits_{i=1}^{2s+1}p_i}{q}\right) = \left(\frac{-2}{q}\right) \cdot \left(\frac{\prod\limits_{i=1}^{2s+1}p_i}{q}\right) = -1$,矛盾.

所以式(5)无正整数解.

2.4 定理4证明

证明

$$2\prod_{i=1}^{s} p_{i}x^{2} - mqy^{2} = -1 \tag{7}$$

两边取模 q 得:

$$2\prod_{i=1}^{s} p_i x^2 \equiv -1 \pmod{q} \tag{8}$$

若式(7)有正整数解,则式(8)有解,故有模 q 的 Legendre 符号值 $\left(\frac{-2\prod\limits_{i=1}^{n}p_{i}}{q}\right)=1$.

当
$$q \equiv -1 \pmod{8}$$
 时, $\left(\frac{-1}{a}\right) = -1$, $\left(\frac{2}{a}\right) = 1$,则 $\left(\frac{-2}{a}\right) = \left(\frac{-1}{a}\right) \cdot \left(\frac{2}{a}\right) = -1$.

当
$$q \equiv -3 \pmod{8}$$
 时, $\left(\frac{-1}{q}\right) = 1$, $\left(\frac{2}{q}\right) = -1$,则 $\left(\frac{-2}{q}\right) = \left(\frac{-1}{q}\right) \cdot \left(\frac{2}{q}\right) = -1$.

又
$$\left(\frac{p_i}{q}\right) = 1$$
 $(i = 1, 2, \dots, s)$,则 $\left(\frac{\prod\limits_{i=1}^{s} p_i}{q}\right) = 1$,故 $\left(\frac{-2\prod\limits_{i=1}^{s} p_i}{q}\right) = \left(\frac{-2}{q}\right)\left(\frac{\prod\limits_{i=1}^{s} p_i}{q}\right) = -1$,矛盾.

所以式(7)无正整数解.

2.5 定理5证明

证明 Pell 方程

$$2\prod_{i=1}^{2s+1}p_i\cdot\prod_{i=1}^tq_jx^2-mqy^2=1$$
 (9)

两边取模 q 得:

$$2\prod_{i=1}^{2s+1} p_i \cdot \prod_{j=1}^{t} q_j x^2 \equiv 1 \pmod{q}$$
 (10)

若式(9)有正整数解,则式(10)有解,故有模 q 的 Legendre 符号值 $\left(\frac{2\prod\limits_{i=1}^{2s+1}p_i\cdot\prod\limits_{j=1}^{t}q_j}{q}\right)=1$. 因 q=

$$\pm 1 \pmod{8}, \emptyset \left(\frac{2}{q}\right) = 1. \ \ \mathbb{Z}\left(\frac{p_i}{q}\right) = -1 (i = 1, 2, \cdots, 2s + 1), \left(\frac{p_j}{q}\right) = 1 (j = 1, 2, \cdots, t), \emptyset \left(\frac{\prod\limits_{i=1}^{2s+1} p_i}{q}\right) = -1,$$

所以式(9)无正整数解.

2.6 定理6证明

证明 Pell 方程

$$2\prod_{i=1}^{2s+1} p_i \cdot \prod_{j=1}^{t} q_j x^2 - mqy^2 = -1$$
 (11)

两边取模 q 得:

$$2\prod_{i=1}^{2s+1} p_i \cdot \prod_{j=1}^{t} q_j x^2 \equiv -1 \pmod{q}$$
 (12)

若式(11)有正整数解,则式(12)有解,故有模 q 的 Legendre 符号值 $\left(\frac{-2\prod\limits_{i=1}^{2s+1}p_i\cdot\prod\limits_{j=1}^{t}q_j}{q}\right)=1.$

当
$$q \equiv 1 \pmod{8}$$
 时, $\left(\frac{-1}{q}\right) = 1$, $\left(\frac{2}{q}\right) = 1$,则 $\left(\frac{-2}{q}\right) = \left(\frac{-1}{q}\right) \cdot \left(\frac{2}{q}\right) = 1$.

当
$$q \equiv 3 \pmod{9}$$
 时, $\left(\frac{-1}{q}\right) = -1$, $\left(\frac{2}{q}\right) = -1$,则 $\left(\frac{-2}{q}\right) = \left(\frac{-1}{q}\right) \cdot \left(\frac{2}{q}\right) = 1$.

又
$$\left(\frac{p_i}{q}\right) = -1(i = 1, 2, \dots, 2s + 1)$$
, $\left(\frac{p_j}{q}\right) = 1(j = 1, 2, \dots, t)$, 则 $\left(\frac{\prod\limits_{i=1}^{2s+1} p_i}{q}\right) = -1$, $\left(\frac{\prod\limits_{i=1}^{t} p_j}{q}\right) = 1$, 故

$$\left(\frac{-2\prod\limits_{i=1}^{2s+1}p_i\cdot\prod\limits_{j=1}^tq_j}{q}\right)=\left(\frac{-2}{q}\right)\cdot\left(\frac{\prod\limits_{i=1}^{2s+1}p_i}{q}\right)\cdot\left(\frac{\prod\limits_{i=1}^tp_j}{q}\right)=-1\,, \text{ Fig.}$$

所以式(11)无正整数解.

参考文献:

- [1] 管训贵. 关于不定方程 $4x^2 py^2 = 1[J]$. 湖北民族学院学报: 自然科学版, 2011, 29(1): 46-48
- [2] 管训贵. 关于不定方程 $4x^2 py^2 = 1$ 的一个注记[J]. 西安文理学院学报:自然科学版,2011,29(7):37-39
- [3] 黄金贵. 不定方程 $ax^2 by^2 = 1$ 的整数解与一个猜想的解决[J]. 中学数学月刊,1994(9):12-14
- [4] 杜先存,万飞,赵金娥. Pell 方程 $ax^2 by^2 = 1$ 的最小解 [J]. 湖北民族学院学报:自然科学版,2012,30(1):35-38

On Pell Equation
$$ax^2 - mqy^2 = \pm 1$$

 $(m \in Z^+, 2 \mid a, q \equiv \pm 1 \pmod{4}, p \text{ is a prime factor})$

DU Xian-cun¹, Wan Fei¹, ZHAO Jin-e²

- (1. Teachers' Educational College, Honghe University, Yunnan Mengzi 661199, China;
 - 2. Department of Mathematics, Honghe University, Yunnan Mengzi 661199, China)

Abstract: The discrimination of solubility of Pell equation $ax^2 - by^2 = \pm 1$ ($a, b \in Z^+$, ab is not a perfect square positive integer) is a very meaningful question. In this paper, by applying related knowledge of Legendre sign and nature of congruence, it works out several conclusions that Pell equation such as $ax^2 - mqy^2 = \pm 1$ ($m \in Z^+$, $2 \mid a,q \equiv \pm 1 \pmod{4}$, p is a prime factor, a,m,q is not perfect square number) has not positive integer solution. These conclusions play an important role in studying restricted Pell equation $x^2 - Dy^2 = \pm 1$ (D is a non-square positive integer).

Key words: Pell Equation; positive integer solution; prime factor; congruence; Legendre sign

责任编辑:李翠薇

(上接第10页)

Remarks on Operator Coefficient in Taylor Formula for Vector Function of Hopf Bifurcation

YUAN Hong¹, ZHANG Fu-chen², LI Xiao-wu³

- (1. School of Science, Linvi University, Shandong Linvi 276005, China;
- 2. School of Mathematics and Statistics, Chongqing University, Chongqing 401331, China;
- 3. School of Computer and Information Engineering, Guizhou University for Nationalities, Guiyang 550025, China)

Abstract: A relatively perfect coefficient expression similar to a Hessian matrix in Taylor expanded formula for vector function of Hopf bifurcation $f: R^n \times R \longrightarrow R^n$, which enhance visual recognition to operator coefficient of Taylor formula of vector function, here vector function $f(x_1, x_2, \dots, x_n, \partial) = (f_1(x_1, x_2, \dots, x_n, \partial), f_2(x_1, x_2, \dots, x_n, \partial), \dots, f_n(x_1, x_2, \dots, x_n, \partial))^T$.

Key words: Hopf bifurcation; Taylor formula; vector function; operator