基于曼哈顿局部-全局判别空间学习的滚动轴承故障诊断方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Rolling Bearing Fault Diagnosis Method Based on Manhattan Local-global Discriminative Space Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    目的 滚动轴承作为机械设备的核心部件,在长时间运转下会出现磨损、变形。 针对现有方法判别轴承处于 何种故障困难的问题,提出一种基于曼哈顿局部-全局鉴别空间学习的故障诊断方法。 方法 该方法具有更丰富的 潜在流形结构,使用曼哈顿距离重构原始空间图结构;通过构造局部类内和类间图发掘潜在鉴别信息和局部信息, 并在原始全局结构的基础上增加全局类内和类间图,提高了类间分离性和类内聚合性。 首先,将原始故障信号进 行特征提取得到特征测试集和特征训练集;然后,将特征训练集输入曼哈顿局部-全局鉴别空间学习模型中,提取 原始空间中局部信息、全局结构和类别信息;接着,通过求解该模型可以得到空间投影的解析解;最后,将得到的空 间投影解析解与特征测试集输入支持向量机中进行故障分类。 结果 实验结果表明:所提方法在搭建的轴承故障平 台上表现出良好的性能,最终故障识别率为 94. 23%。 结论 文中提出的方法在轴承故障诊断方面表现出较高的识 别率,为轴承故障诊断带来了重要的进展,具有深远的意义。

    Abstract:

    Objective As the core component of mechanical equipment rolling bearings suffer from wear and deformation during long-term operation. Addressing the difficulty of existing methods in distinguishing bearing faults a fault diagnosis method based on Manhattan local-global discriminative space learning is proposed. Methods The method has a richer underlying manifold structure and uses the Manhattan distance to reconstruct the original space graph structure. By constructing local intra-class and inter-class graphs it extracts potential discriminative and local information. Additionally global intra-class and inter-class graphs are introduced based on the original global structure enhancing inter-class separability and intra-class cohesion. Firstly feature extraction is performed on the original fault signals to obtain feature testing and training sets. Then these feature training sets are inputted into the Manhattan local-globaldiscriminative space learning model to extract local information global structure and category information from the original space. Next by solving this model an analytical solution for spatial projection can be obtained. Finally the obtained analytical solution for spatial projection is input into a support vector machine along with the feature testing set for fault classification. Results Experimental results demonstrate that the proposed method exhibits excellent performance on the constructed bearing fault platform achieving a final fault recognition rate of 94. 23%. Conclusion The method proposed in this paper shows high recognition accuracy in bearing fault diagnosis marking significant progress in this field and carrying profound implications.

    参考文献
    相似文献
    引证文献
引用本文

侯雅魁,苏树智,张志鹏.基于曼哈顿局部-全局判别空间学习的滚动轴承故障诊断方法[J].重庆工商大学学报(自然科学版),2025,42(6):55-62
HOU Yakui SU Shuzhi ZHANG Zhipeng. Rolling Bearing Fault Diagnosis Method Based on Manhattan Local-global Discriminative Space Learning[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2025,42(6):55-62

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-19
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升