基于多分支稀疏残差网络的轴承故障诊断方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Bearing Fault Diagnosis Method Based on Multi-branch Sparse Residual Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    目的 工业生产中,滚动轴承运行环境复杂,环境噪声降低了常见网络模型对轴承故障识别的准确率,抗噪 声干扰能力低,为了提高模型识别准确率与抗噪声干扰能力,设计了多分支稀疏残差网络对轴承故障进行诊断。 方法 多分支稀疏残差网络采用多分支结构,分别采用不同卷积核对不同窗口大小的特征进行多尺度特征融合以 提高网络模型的识别准确率与抗噪声干扰能力;此外,将注意力机制融入多分支网络中,对各个分支卷积层的权重 进行调整;最后,为了提高所提方法的特征学习能力,引入稀疏残差连接,避免数据冗余。 结果 通过对比实验,验证 了所提方法的有效性,处于无噪声情况下,识别准确率达 99. 2%,处于强噪声情况下,模型识别准确率达 95. 85%, 在实际生产场景中模型的识别率为 98. 90%。 结论 实验结果表明:该模型有着很强的特征学习能力,轴承故障识别 精度较高,有着较强的抗噪声干扰能力,有着较好的实用价值。

    Abstract:

    Objective In industrial production the operating environment of rolling bearings is complex and environmental noise reduces the accuracy of common network models for bearing fault identification leading to low noise interference resistance. To improve model identification accuracy and noise interference resistance a multi-branch sparse residual network was designed for bearing fault diagnosis. Methods The multi-branch sparse residual network utilized a multi-branch structure employing different convolution kernels to perform multi-scale feature fusion on features of varyingwindow sizes thereby enhancing the model?? s identification accuracy and resistance to noise interference. Additionally an attention mechanism was integrated into the multi-branch network to adjust the weights of the convolutional layers in each branch. Finally to improve the feature learning capability of the proposed method sparse residual connections were introduced to avoid data redundancy. Results Through comparative experiments the effectiveness of the proposed method was verified achieving an identification accuracy of 99. 2% under noise-free conditions and an identification accuracy of 95. 85% under strong noise conditions. In actual production scenarios the model?? s recognition rate was 98. 90%. Conclusion The experimental results indicate that the model has strong feature learning capability. It achieves high accuracy in bearing fault identification demonstrates strong resistance to noise interference and possesses significant practical value.

    参考文献
    相似文献
    引证文献
引用本文

赵学义 ,张晓光 ,陆凡凡 ,周 立 ,徐清晨.基于多分支稀疏残差网络的轴承故障诊断方法[J].重庆工商大学学报(自然科学版),2025,42(6):48-54
ZHAO Xueyi ZHANG Xiaoguang LU Fanfan ZHOU Li XU Qingchen . Bearing Fault Diagnosis Method Based on Multi-branch Sparse Residual Network[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2025,42(6):48-54

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-19
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升