基于 FOUKF-FOSUKF 的锂电池 SOC 估计
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


State of Charge Estimation of Lithium Battery Based on FOUKF-FOSUKF
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    目的 对锂电池荷电状态的准确估计在新能源汽车领域具有重要意义,基于此,提出一种双无迹卡尔曼滤波 算法(FOUKF-FOSUKF),即分数阶球形无迹卡尔曼滤波算法和分数阶无迹卡尔曼滤波算法联合估计电池荷电状 态的方法。 方法 先用自适应遗传算法离线辨识电池模型的参数;再用分数阶无迹卡尔曼滤波算法(FOUKF)进行 在线参数辨识,实时估计并更新锂电池分数阶模型中的各个参数;最后利用所提出的联合算法 FOUKF-FOSUKF 对 锂电池的荷电状态进行估计,在动态应力测试和 US06 两种工况下与传统整数阶球形无迹卡尔曼滤波算法(SUKF) 和分数阶球形卡尔曼滤波算法(FOSUKF)进行精度验证对比。 结果 在估计荷电状态的过程中,FOUKF-FOSUKF 的 SOC 误差和电压误差均远低于传统的 SUKF 与 FOSUKF,该算法可以有效估计电池模型中的参数,降低端电压 估计的误差,提高估计荷电状态的精度。 结论 FOUKF-FOSUKF 在估计锂电池荷电状态方面对比 SUKF 和 FOSUKF 算法具有精度更高,误差更小,适用性更强,收敛性更好的优点。

    Abstract:

    Objective Accurate estimation of the state of charge SOC of lithium batteries is of great significance in the field of new energy vehicles. Therefore a dual unscented Kalman filter algorithm FOUKF-FOSUKF is proposed which combines the fractional-order spherical unscented Kalman filter FOUKF and the fractional-order unscented Kalman filter FOSUKF to estimate the SOC of batteries. Methods Firstly the parameters of the battery model are identified offline using the adaptive genetic algorithm AGA . Then the fractional-order unscented Kalman filter FOUKF is employed for online parameter identification to estimate and update the parameters in the fractional-order model of the lithium battery in real-time. Finally the proposed combined algorithm FOUKF-FOSUKF is used to estimate the state of charge SOC of the lithium battery. The accuracy of the proposed method is verified and compared with the traditional integer-order spherical unscented Kalman filter SUKF and the fractional-order spherical Kalman filter FOSUKF under two conditions dynamic stress test DST and US06. Results During the SOC estimation process the SOC error and voltage error of FOUKF-FOSUKF are significantly lower than those of the traditional SUKF and FOSUKF. This algorithm can effectively estimate the parameters in the battery model reduce the error in terminal voltage estimation and improve the accuracy of SOC estimation. Conclusion FOUKF-FOSUKF has higher accuracy smaller error stronger applicability and better convergence compared with the SUKF and FOSUKF algorithms in estimating the SOC of lithium batteries.

    参考文献
    相似文献
    引证文献
引用本文

杨 翀 ,凌六一.基于 FOUKF-FOSUKF 的锂电池 SOC 估计[J].重庆工商大学学报(自然科学版),2025,42(5):107-113
YANG Chong LING liuyi . State of Charge Estimation of Lithium Battery Based on FOUKF-FOSUKF[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2025,42(5):107-113

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-24
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升