基于随机森林的食品安全监测预警研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Research on Food Safety Monitoring and Early Warning Based on Random Forest
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    目的 对商户进行食品安全监测预警是我国食品安全监管中的热点问题,实现高效的食品安全预警与监管。 方法 结合重庆地区食品安全的特点, 采用专家评价的方式得到综合评价指标,提出 AHP-BP 神经网络综合评价, 建立了具有可靠、客观的食品安全综合评价体系,在此基础上,动态挖掘食品安全特征指数,给出食品安全综合画 像,通过建立基于随机森林的重庆食品安全预警监测的模型,并对重庆市江北区等食品安全数据进行仿真验证。 结果 综合评价指标体系更加合理,预测的准确率、运行时间等相较 XGBoost 算法均有明显提升。 结论 机器学习方 法有助于建立更完备、合理的食品安全评价体系,基于随机森林的食品安全预警模型在精确率、AUC、召回率等方 面表现更优, 在商户食品安全监管中不仅精度高,还有很好的鲁棒性。

    Abstract:

    Objective Conducting food safety monitoring and early warning for merchants is a critical issue in China?? s food safety supervision. This study aims to achieve efficient food safety early warning and supervision. Methods In combination with the characteristics of food safety in Chongqing comprehensive evaluation indicators were obtained through expert assessment. An AHP-BP neural network comprehensive evaluation method was proposed and a reliable and objective food safety evaluation system was established. Based on this dynamic mining of food safety feature indices was conducted to generate a comprehensive food safety profile. A food safety early warning and monitoring model based on random forest was established and the model was verified through simulation using food safety data from Jiangbei District Chongqing. Results The comprehensive evaluation indicator system is more rational with significant improvements in prediction accuracy and runtime compared with the XGBoost algorithm. Conclusion Machine learning methods contribute to the establishment of a more comprehensive and rational food safety evaluation system. The food safety early warning model based on random forest performs better in terms of precision AUC and recall rate. It not only achieves high accuracy in food safety supervision for merchants but also demonstrates good robustness.

    参考文献
    相似文献
    引证文献
引用本文

刘光惠 ,陈卓超 ,鲜思东 ,冯苗苗 ,鲜智宇 ,李常郡.基于随机森林的食品安全监测预警研究[J].重庆工商大学学报(自然科学版),2025,42(5):27-35
LIU Guanghui CHEN Zhuochao XIAN Sidong FENG Miaomiao XIAN Zhiyu LI Changjun. Research on Food Safety Monitoring and Early Warning Based on Random Forest[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2025,42(5):27-35

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-24
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升