一种结合上下文感知模块的高压微雾灰尘检测方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


A High-pressure Micro-mist Dust Detection Method Incorporating a Context-aware Module
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    目的 针对堆场下料口灰尘大,喷雾系统无法快速精准定位除尘等问题,提出一种结合上下文感知模块的检 测方法以实现对现场粉尘的有效检测,辅助高压喷雾系统快速除尘。 方法 首先模型的主干网络为轻量级网络 EfficientNetB0,在实现高效特征提取的同时可以大大减少网络的模型参数量,提升部署阶段应用效率;其次利用 CoT( Contextual Transformer) 模块充分探索相邻层级之间的上下文信息,以一种结合静态与动态信息的方式提升自 注意力学习,增强网络特征提取能力,进而提升输出特征的表达能力;最后在 3 个输出层之间进行通道调整与融合 之后输入自适应空间特征融合( Adaptively Spatial Feature Fusion,ASFF) 网络,进一步融合各通道之间的信息特征, 有助于特征细节信息的学习。 结果 整个网络的模型大小为 20. 42 MB,有利于模型的嵌入使用,均值平均精度 ( mean Average Precision,mAP) 为 95. 98%。 结论 提出的结合上下文感知模块的检测方法应用于堆场下料口灰尘 检测不仅降低了计算量且在精确度方面有一定优势,满足检测要求。

    Abstract:

    Objective To address issues such as excessive dust at the material unloading point in the yard and the inability of spray systems to quickly and accurately locate and remove the dust this paper proposed a detection method integrating a context-aware module to effectively detect on-site dust and assist the high-pressure spray system in rapid and precise dust removal. Methods The backbone network of the model was a lightweight network EfficientNetB0 which significantly reduced model parameters while achieving efficient feature extraction and improving deployment efficiency. Additionally, the CoT Contextual Transformer module was used to explore contextual information between adjacent layers enhancing self-attention learning with a combination of static and dynamic information to improve feature extraction and expression. Finally after channel adjustment and fusion between three output layers the input was passed to the Adaptive Spatial Feature Fusion ASFF network for further integration of information features across channels so as to facilitate the learning of feature details. Results The total model size of this method is 20. 42MB facilitating model embedding usage and the mean Average Precision mAP is 95. 98%. Conclusion The proposed context-aware module integrated detection method reduces computational load and has a certain advantage in accuracy for detecting dust at the material unloading point in the yard meeting detection requirements effectively.

    参考文献
    相似文献
    引证文献
引用本文

陈 洋 ,张晓光 ,陆凡凡 ,束正华 ,徐文强 ,王 涵 ,徐新志.一种结合上下文感知模块的高压微雾灰尘检测方法[J].重庆工商大学学报(自然科学版),2025,42(4):116-121
CHEN Yang ZHANG Xiaoguang LU Fanfan SHU Zhenghua XU Wenqiang WANG Han XU Xinzhi. A High-pressure Micro-mist Dust Detection Method Incorporating a Context-aware Module[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2025,42(4):116-121

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-02
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升