基于人工与 ChatGPT 标注的推文情感分析对比研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Comparative Study on Sentiment Analysis of Tweets Based on Manual and ChatGPT Annotation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    目的 针对特定推文情感分析任务中标注数据的困难和由于标注不准确带来的分类结果不尽如人意问题,提出 一种机器标注数据的方法来研究深度学习模型对人工标注和机器标注推文数据情感分类的性能表现差异。 方法 研 究中,对于统一的标签体系,分别对推文数据进行人工标注和运用 ChatGPT 模型接口标注,再采用 BERT-TextCNN 深 度学习混合模型,对经过人工标注和 ChatGPT 标注的数据集进行情感分类。 结果 实验结果表明:人工标注数据集在 整体性能上表现出更高的准确性和可信度,但是在某些推文数据上, ChatGPT 大模型以其比人更丰富的知识储备,可 以生成比人更客观科学的可解释性标注,在情感分类结果上呈现出一定的优势,人工标注和机器标注方法各具优劣; 由此可以得出对于文本情感分类任务,机器标注是一种可行的标注方法。 结论 在实际应用场景中,可以根据任务需 求灵活选择和结合两种标注方法,充分利用两者之间的优势,以达到更佳的分析性能和效果。

    Abstract:

    Objective This study addresses the challenges of annotating data for specific tweet sentiment analysis tasks and the issues arising from inaccurate annotations leading to unsatisfactory classification results. A method for machine annotation of data was proposed to investigate the performance differences in sentiment classification of tweets annotated by human annotators and the ChatGPT model. Methods In this study for a unified labeling system tweet data was annotated both manually and using the ChatGPT model interface followed by sentiment classification using a BERT- TextCNN hybrid deep learning model on both datasets. Results Experimental results indicated that the manually annotated dataset exhibited higher overall accuracy and reliability. However for certain tweet data the ChatGPT model with its richer knowledge base can produce more objective and scientifically interpretable annotations showing certain advantages in sentiment classification results. Both human and machine annotation methods have their strengths and weaknesses. Therefore it can be concluded that machine annotation is a feasible labeling method for text sentiment classification tasks. Conclusion In practical applications it is advisable to flexibly choose and combine both annotation methods based on task requirements and fully leverage the strengths of these two methods to achieve better analytical performance and outcomes.

    参考文献
    相似文献
    引证文献
引用本文

杨 艺 ,黄镜月 ,贺品尧 ,荣 婷.基于人工与 ChatGPT 标注的推文情感分析对比研究[J].重庆工商大学学报(自然科学版),2025,42(4):95-101
YANG Yi HUANG Jingyue HE Pinyao RONG Ting. Comparative Study on Sentiment Analysis of Tweets Based on Manual and ChatGPT Annotation[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2025,42(4):95-101

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-02
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升