基于操纵痕迹融合的人脸伪造检测方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Face Forgery Detection Method Based on Manipulation Trace Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    目的 针对目前缺乏一种能够在复杂场景中暴露假脸图像的强大的假人脸检测模型,提出了一种新的网络, 称为双流操纵痕迹网络( Two-stream Manipulation Trace Network, TSMTN) ,用于学习假图像面部区域上的细微操纵 痕迹。 方法 该方法不同以往直接从图像中学习特征,而是先从图像中提取操纵痕迹,之后通过操纵痕迹检测人脸 是否被操纵。 该网络由于 3 个关键模块组成:空间域操纵痕迹提取( Spatial Domain Manipulation Trace Extraction, SDMTE) 、频域操纵痕迹提取( Frequency Domain Manipulation Trace Extraction, FDMTE) 以及基于自注意力机制的 特征融合模块( Feature Fusion Module, FFM) 。 SDMTE 使用卷积神经网络( CNNs) 来学习图像空间域中的细微操纵 痕迹。 FDMTE 学习图像频域中高频信息的操纵痕迹。 FFM 融合空间域和频域中的操纵痕迹,以生成用于分类的 最终特征。 结果 实验结果表明:该模型具有良好的性能,在常用检测数据集上到达了先进的水平。 结论 该方法表 现出较好的鲁棒性和泛化能力,取得了一些进步,具有重要意义。

    Abstract:

    Objective In view of the current lack of a powerful fake face detection model that can expose fake face images in complex scenes a new network called two-stream manipulation trace network TSMTN is proposed for learning subtle manipulation traces on facial regions in fake images. Methods This method is different from the previous methods of directly learning features from images. Instead it first extracts manipulation traces from the image and then uses the manipulation traces to detect whether the face has been manipulated. The network consists of three key modules spatial domain manipulation trace extraction SDMTE frequency domain manipulation trace extraction FDMTE and feature fusion module FFM based on self-attention mechanism. SDMTE uses convolutional neural networks CNNs to learn subtle manipulation traces in the image spatial domain. FDMTE learns the manipulation traces of high-frequency information in the frequency domain of images. FFM fuses manipulation traces in the spatial and frequency domains to generate final features for classification. Results The experimental results show that the model has good performance and has reached an advanced level on commonly used detection datasets. Conclusion This method shows good robustness and generalization ability and has made some progress which is of great significance.

    参考文献
    相似文献
    引证文献
引用本文

黄继胜,杨高明.基于操纵痕迹融合的人脸伪造检测方法[J].重庆工商大学学报(自然科学版),2025,42(4):80-87
HUANG Jisheng YANG Gaoming. Face Forgery Detection Method Based on Manipulation Trace Fusion[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2025,42(4):80-87

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-02
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升