YOLOv8-SSDW:基于 YOLOv8 的带钢表面缺陷检测算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


YOLOv8-SSDW A Steel Surface Defect Detection Algorithm Based on YOLOv8
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    目的 针对现有带钢表面缺陷检测精度较低、存在漏检和误检等问题,提出了一种改进 YOLOv8 的缺陷检测 算法 YOLOv8 - SSDW。 方 法 该 算 法 以 YOLOv8n 为 基 准 模 型, 在 骨 干 网 络 结 构 中 引 入 SKNet ( Selective Kernel Networks) 注意力模块,加强骨干网络的特征提取能力和自适应能力,使网络在特征提取过程中更关注缺陷目标;同 时,在 YOLOv8 的颈部使用 Slim-Neck 结构,减少模型的参数量和计算量;为进一步提升网络的特征提取能力,提 出一种融合可变形卷积,强化对缺陷目标的特征学习;考虑缺陷样本质量不平衡问题,使用 WIoU( wise intersection over union) 损失函数,其梯度增益分配策略使问题得到有效改善,并且提高模型收敛速度和回归精度。 结果 改进 后的模型在带钢数据集上进行实验,结果表明:改进后的模型的平均精度达到 85. 5%,相比基准模型提高了 2. 7%。 结论 通过大量实验可以证明改进网络的有效性,改善了带钢表面缺陷检测精度较低的问题,减少了漏检和误检的 情况,同时满足实时性要求;相较于目前主流模型,该改进算法在检测精度具有一定优势,对后续研究用于实际检 测具有参考价值。

    Abstract:

    Objective In response to the issues of low detection accuracy missed detections and false alarms in existing steel surface defect detection methods an improved defect detection algorithm YOLOv8-SSDW based on YOLOv8 was proposed. Methods This algorithm took YOLOv8n as the benchmark model and introduced the SKNet Selective Kernel Networks attention module into the backbone network structure to enhance the feature extraction and adaptability of the backbone network allowing the network to pay more attention to defect targets during the feature extraction process. At the same time the Slim-Neck structure was used in the neck of YOLOv8 to reduce the number of model parameters and computational load. To further enhance the network ?? s feature extraction capability a deformable convolution fusion method was proposed to strengthen the feature learning for defect targets. Considering the imbalance in defect sample quality the WIoU wise intersection over union loss function was used which effectively addressed the issue through its gradient gain allocation strategy enhancing model convergence speed and regression accuracy. Results Experiments on the steel dataset showed that the average accuracy of the improved model reached 85. 5% which was an increase of 2. 7% over the benchmark model. Conclusion Extensive experiments demonstrate the effectiveness of the improved network which resolves the issue of low accuracy in steel strip surface defect detection reduces missed and false detections and meets real-time requirements. Compared with current mainstream models the proposed model has certain advantages in detection accuracy and offers a valuable reference for practical detection in future research.

    参考文献
    相似文献
    引证文献
引用本文

戴林华,黎远松,石 睿. YOLOv8-SSDW:基于 YOLOv8 的带钢表面缺陷检测算法[J].重庆工商大学学报(自然科学版),2025,42(4):44-52
DAI Linhua LI Yuansong SHI Rui. YOLOv8-SSDW A Steel Surface Defect Detection Algorithm Based on YOLOv8[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2025,42(4):44-52

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-02
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升