基于掩蔽图像一致性的无源领域自适应算法研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Research on Source-free Domain Adaptation Algorithm Based on Masked Image Consistency
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    目的 无监督领域自适应( Unsupervised Domain Adaptation, UDA) 旨在将有标签源域中的知识适应到没有任 何标签的目标域中,使得目标任务同样表现良好。 针对以前的 UDA 方法存在隐私泄露风险以及容易在目标域中 具有相似视觉外观的类之间产生混淆的问题,提出一种基于掩蔽图像一致性的无源领域自适应算法, 称为掩蔽假 设迁移( Masked Hypothesis Transfer, MHT) 。 方法 MHT 采用假设迁移( Hypothesis Transfer, HT) 思想,冻结源模型 的分类器模块( 假设) ,通过信息最大化和自监督伪标记来学习目标特征提取器,以隐式地对齐目标域与源域的表 示;此外,还提出一个掩蔽图像一致性 ( Masked Image Consistency, MIC) 模块,显式迫使模型学习目标域的空间上 下文关系来增强假设迁移( HT) ,MIC 强迫掩蔽目标图像的预测和伪标签之间的一致性,就必须学会从被掩蔽区域 的上下文中推断其预测。 结果 该算法在闭集 UDA、部分集 UDA 和多源 UDA 3 种适应设置下,在 4 个公共基准上 进行了广泛的测试, 其中在 VisDA - C 上达到了 87. 6% 的准确率, 比 SHOT 高 5. 3%, 在 Office - Home 上达到了 72. 6%的准确率,比 SHOT 高 0. 9%。 结论 实验结果表明: 掩蔽图像一致性目标可以作为额外的线索增强无源领域 自适应,MHT 优于其他对比方法。

    Abstract:

    Objective Unsupervised domain adaptation UDA aims to adapt knowledge from labeled source domains to unlabeled target domains achieving comparable performance in target tasks. Previous UDA methods face risks of privacy leakage and confusion among classes with similar visual appearances in the target domain. This paper proposed a source- free domain adaptation method based on masked image consistency called Masked Hypothesis Transfer MHT . Methods MHT adopted the idea of hypothesis transfer HT by freezing the classifier module hypothesis of the source model and learned the target feature extractor through information maximization and self-supervised pseudo-labeling to implicitly align representations between the target and source domains. Additionally a masked image consistency MIC module was introduced to explicitly enforce the model to learn spatial contextual relationships in the target domain to enhance hypothesis transfer HT . MIC forced consistency between the predictions on masked target images and the pseudo-labels so the model must learn to infer predictions from the context of the masked region. Results The algorithm was extensively tested on four public benchmarks under closed-set UDA partial-set UDA and multi-source UDA settings. It achieved 87. 6% accuracy on VisDA-C outperforming SHOT by 5. 3% and 72. 6% accuracy on Office-Home surpassing SHOT by 0. 9%. Conclusion Experimental results demonstrate that the target of masked image consistency serves as an additional clue to enhance source-free domain adaptation and MHT outperforms other comparative methods.

    参考文献
    相似文献
    引证文献
引用本文

刘二虎.基于掩蔽图像一致性的无源领域自适应算法研究[J].重庆工商大学学报(自然科学版),2025,42(4):27-35
LIU Erhu. Research on Source-free Domain Adaptation Algorithm Based on Masked Image Consistency[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2025,42(4):27-35

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-02
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升