基于上下文增强和特征融合的目标检测算法
作者:

Target Detection Algorithm Based on Context Enhancement and Feature Fusion
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
    摘要:

    目的 针对 CenterNet 无锚框目标检测算法表征能力不足的问题,提出一种基于上下文增强和特征融合的学 习方法。 方法 该方法采用多感受野和信息融合的思想,构建自适应上下文提取模块和特征融合策略。 首先网络通 过自适应上下文提取模块的多路径空洞卷积层获取目标的上下文特征,督促深层网络学习多尺度信息;然后,通过 ACON-C 激活函数在网络中加入非线性因素,对网络神经元自适应地激活,增强网络的数据拟合能力;最后,联合 注意力特征融合策略对不同层次的特征信息进行合并,通过整合深层网络的语义信息和浅层网络的位置信息,来 捕获对识别任务有用的特征信息,同时学习特征图在多个层次通道间的相关性,以加强网络对关键目标特征的专 注度。 结果 所提方法在 PASCAL VOC 公开数据集上 mAP 达到 83. 82%,约比基线算法 CenterNet 增加了 3. 72%。 相较于经典算法 Faster R-CNN、SSD、YOLOv3 分别增加了 7. 4%、9. 5%、3. 5%。 结论 有效地提升了 CenterNet 算法 的检测性能,并且改进的 CenterNet 相较于其他目标识别算法具有更高的识别准确度,在目标检测应用中具有良好 的实用性,充分验证了所提方法的有效性。

    Abstract:

    Objective Aiming at the issue of inadequate characterization capacity of CenterNet anchor-free object recognition algorithm a method based on context enhancement and feature fusion was proposed. Methods This method adopted the concepts of multi-receptive field and information fusion to construct an adaptive context extraction module and feature fusion strategy. Firstly the network obtained the contextual features of the target through the multipath dilated convolution of the adaptive context extraction module prompting deep networks to learn multi-scale information. Then nonlinear factors were added to the network through the ACON-C activation function adaptively activating the neurons of the network and enhancing the data-fitting ability of the network. Finally a joint attention feature fusion strategy was used to merge feature information at different levels. By integrating semantic features from the high-level network and positional features from the low-level network the feature information that is useful for the recognition task was captured. At the same time the correlation between the feature maps in multiple levels of channels was learned to enhance the network?? s focus on key target features. Results The proposed method achieved an mAP of 83. 82% on the PASCAL VOC public dataset an improvement of 3. 72% compared with the CenterNet baseline algorithm. It also outperformed classic algorithms such as Faster R-CNN SSD and YOLOv3 by 7. 4% 9. 5% and 3. 5% respectively. Conclusion The proposed method effectively enhances the detection performance of the CenterNet algorithm and the improved CenterNet has higher recognition accuracy compared with other target recognition algorithms. The proposed method proves to be practical in target detection applications validating the effectiveness of the proposed approach.

    参考文献
    相似文献
    引证文献
引用本文

杨海燕 ,王凤随 ,张兴旺.基于上下文增强和特征融合的目标检测算法[J].重庆工商大学学报(自然科学版),2025,42(3):102-109
YANG Haiyan, WANG Fengsui ZHANG Xingwang . Target Detection Algorithm Based on Context Enhancement and Feature Fusion[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2025,42(3):102-109

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 在线发布日期: 2025-05-14
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升