基于自注意力和 Bi-LSTM 的业务流程异常检测模型
作者:

Anomaly Detection Model for Business Process Based on Self-attention and Bi-LSTM
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
    摘要:

    业务流程中的一项重要工作是进行数据的异常检测,它可以用于监控和识别企业或组织中出现的异常情 况。 目的 针对目前业务流程异常检测方法大多数只考虑控制流,并未考虑事件日志中其他数据属性对业务流程影 响的情况,提出一个多视角无监督异常检测模型。 方法 首先,将控制流和数据流分别进行处理,然后拼接形成可以 输入到模型中的数据类型;其次,利用自注意力机制和 Bi-LSTM 自编码器组合成的模型,分别对控制流视角和数 据流视角进行业务流程事件日志的特征提取,并进行拼接和异常检测,异常阈值由自编码器的重构误差来确定;最 后将提出的模型在公共数据集上进行了验证。 结果 用真实事件日志对提出的方法进行评估,与其他方法进行对比 分析可知,所提出的方法在精确度、召回率和 F1 分数 3 个方面都有较好的表现,且所提出的模型 AUC 在所有数据 集上都达到了较大的值。 结论 实验结果表明:所提出的方法可以更好地检测过程事件日志中的异常;通过在模型 中加入注意力机制并且将控制流和数据流视角进行结合,更好地表示了过程数据,使得模型的分类性能得到了较 大的提升,在业务流程异常检测方面具有明显的优势。

    Abstract:

    An important task in business processes is anomaly detection of business process data which can be used to monitor and identify abnormal situations in enterprises or organizations. Objective Most current methods for business process anomaly detection only consider the control flow and do not consider the influence of other data attributes in event logs on business processes. Therefore an unsupervised anomaly detection model with multiple perspectives was proposed. Methods Firstly the control flow and data flow were processed separately and then spliced to form the input data type for the model. Secondly a model combining the self-attention mechanism and Bi-LSTM autoencoder was used to extract features from the perspectives of control flow and data flow of business process event logs respectively and then splicing was carried out for anomaly detection with the anomaly threshold determined by the reconstruction error of the autoencoder. Finally the proposed model was validated on public datasets. Results The proposed method was evaluated using real event logs and a comparative analysis with other methods showed that the proposed method performed better in three aspects precision recall and F1 score and the AUC of the proposed model reached large values on all datasets. Conclusion Experimental results show that the proposed method can better detect anomalies in process event logs. By incorporating attention mechanisms into the model and combining control flow and data flow perspectives a better representation of process data is achieved leading to significantly improved classification performance and clear advantages in business process anomaly detection.

    参考文献
    相似文献
    引证文献
引用本文

陈国威 ,卢 可.基于自注意力和 Bi-LSTM 的业务流程异常检测模型[J].重庆工商大学学报(自然科学版),2025,(2):112-119
CHEN Guowei LU Ke . Anomaly Detection Model for Business Process Based on Self-attention and Bi-LSTM[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2025,(2):112-119

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 在线发布日期: 2025-03-13
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升