基于局部纹理差异特征增强的 Deepfake 检测方法
作者:

Deepfake Detection Based on Local Texture Difference Feature Enhancement
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
    摘要:

    目的 针对当前 Deepfake 检测侧重全局伪造特征,而局部纹理差异特征利用不足导致模型泛化性能差的问 题,提出一种基于局部纹理差异特征增强的 Deepfake 检测模型,通过挖掘伪造图像内在的空间伪造模式,提高检测 的准确性和泛化性。 方法 模型首先通过中心差分卷积操作捕捉像素强度和像素梯度两种信息,从而获得更精确的 局部纹理差异信息,提高对伪造图像的敏感性。 其次,构建双层注意力模块,旨在利用空间注意力学习位置敏感的 权重信息,并通过通道注意力自适应调整通道重要性,定位重要纹理差异特征的位置,增强纹理差异特征的表示。 结果 在高质量和低质量的 FaceForensics++数据集上的实验,平均准确率分别达到了 97. 36%和 92. 37%,而 Celeb- DF 数据集上的跨数据集实验获得了比当前先进的检测模型更好的泛化性,大量的消融实验表明了方法的有效性。 结论 实验表明:引入中心差分和双层注意力模块后模型能够更好地捕捉图像的纹理差异信息,适应不同场景和压 缩率的伪造检测,有效提高了 Deepfake 检测的准确性和泛化性。

    Abstract:

    Objective Current Deepfake detection methods primarily focus on global forgery features leading to poor generalization performance of the model due to insufficient utilization of local texture contrast features. To address this issue a Deepfake detection model based on local texture difference feature enhancement was proposed aiming to improve detection accuracy and generalization by exploring intrinsic spatial forgery patterns in forged images. Methods Firstly the model captured both pixel intensity and pixel gradient by center difference convolution operation to obtain more accurate local texture difference information and improve the sensitivity to forged images. Secondly a dual-layer attention module was constructed aiming to use spatial attention to learn location-sensitive weighting information and adaptively adjust the channel importance through channel attention to locate the position of important texture disparity features and enhance the representation of texture disparity features. Results Experiments on high-quality and low-quality FaceForensics + + datasets obtained average accuracies of 97. 36% and 92. 37% respectively while cross-dataset experiments on the Celeb- DF dataset obtained better generalization performance than current state-of-the-art detection models. Extensive ablation studies validate the effectiveness of the proposed method. Conclusion Experiments show that integrating center difference convolution and a dual-layer attention module enables the model to better capture texture difference information in images adapt to different scenarios and compression rates in forgery detection and effectively improve the accuracy and generalization of Deepfake detection.

    参考文献
    相似文献
    引证文献
引用本文

韦争争.基于局部纹理差异特征增强的 Deepfake 检测方法[J].重庆工商大学学报(自然科学版),2025,(2):78-85
WEI Zhengzheng. Deepfake Detection Based on Local Texture Difference Feature Enhancement[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2025,(2):78-85

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 在线发布日期: 2025-03-13
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升