摘要:目的 针对以深度学习为解码的方法在运动想象脑电信号识别过程中仅对原始的运动想象脑电信号进行特 征提取而不进行样本扩充和往往采用单一尺度的卷积对多频段的运动想象脑电信号进行特征提取,无法充分发掘 各频段之间相关性的问题,在主流 EEG-TCNet 解码方法的基础上提出了一种样本扩充和多尺度的解码方法。 方法 首先,对运动想象脑电信号进行分割,以增加数据集样本数,将运动想象脑电信号等间隔下采样成 3 个不同的子序 列,每个子序列都含有与原始运动想象脑电信号相同的数据特征;其次,使用 EEGNet 对每个子序列进行特征提取, 对不同的子序列使用不同尺度的 EEGNet 以便提取不同频段的特征;之后,对每个经过 EEGNet 提取后的子序列采 用一种基于卷积滑动的方法再进分割,充分挖掘每个子序列潜在的信息;再次,将每个处理后的子序列传入到时间 卷积网络进行特征提取和降维;最后,对所有处理后的子序列进行拼接、平均操作,并传入到全连接层进行识别。 结果 在公开的 BCI 竞赛数据集 IV-2a 上进行验证,所做出改进的网络相对于 EEG-TCNet、EEGNet 的解码准确度 分别有 5. 19%和 7. 7%的提升。 结论 证明所做出改进的网络在运动想象脑电信号识别任务中具有更理想的解码 性能。