基于混合域注意力 ResNeSt 的结肠息肉分割模型
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Colon Polyp Segmentation Model Based on Mixed-domain Attention ResNeSt
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    目的 针对因息肉大小不一,边界不清,光线影响,在图片中所占比例较小导致的分割精度不高的问题,提出 了一种改进的 U 型结构网络 BMR-Net。 方法 该模型的框架为编码器-解码器形式,在编码器部分采用 ResNeSt 提 取特征,在计算成本增加很少的情况下改善了特征提取效果; 在编码器和解码器之间设计边界预测生成模块 ( BPGM) 来聚合高层特征并加入改良空间金字塔池化模块,在其中引入注意力机制,提升多尺度信息融合效果,获 得更精确的全局特征图表示;针对不清晰的边缘部分采用反向注意力模块,删除已预测区域,校正边界信息。 结果 在 CVC-ClinicDB、Kvasir - SEG、CVC - ColonDB、 ETIS - Larib、 EndoScene 数据集上进行测试, mDice 值分别达到了 0. 930、0. 903、0. 743、0. 712、0. 874。 结论 该方法分割性能和泛化性能均优于其他的先进方法,并且可以更加精确 和完整地分割出小尺寸息肉,可以为结肠息肉患者提供早期预后信息。

    Abstract:

    Objective To address the challenges posed by polyps of varied sizes unclear boundaries lighting effects and their relatively small proportions in images that result in lower segmentation accuracy an improved U-shaped network structure BMR-Net was proposed. Methods The model adopted an encoder-decoder architecture. The encoder partially utilized ResNeSt for feature extraction enhancing the feature extraction performance with only a slight increase in computational cost. Between the encoder and the decoder a boundary prediction generation module BPGM was designed to aggregate high-level features and incorporate a modified spatial pyramid pooling module in which an attention mechanism was introduced. This promoted multi-scale information fusion obtaining a more accurate global feature map representation. For unclear edge areas a reverse attention module was applied to remove previously predicted areas and correct the boundary information. Results Tests were conducted on the CVC-ClinicDB Kvasir-SEG CVC-ColonDB ETIS-Larib and EndoScene datasets with mDice values reaching 0. 930 0. 903 0. 743 0. 712 and 0. 874 respectively. Conclusion This method outperforms other advanced methods in terms of segmentation performance and generalization ability. Furthermore it can segment small-sized polyps more precisely and completely providing early prognosis information for patients with colon polyps.

    参考文献
    相似文献
    引证文献
引用本文

周孟然,刘思怡,卞 凯,王 宁,高立鹏.基于混合域注意力 ResNeSt 的结肠息肉分割模型[J].重庆工商大学学报(自然科学版),2025,(1):85-93
ZHOU Mengran LIU Siyi BIAN Kai WANG Ning GAO Lipeng. Colon Polyp Segmentation Model Based on Mixed-domain Attention ResNeSt[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2025,(1):85-93

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-24
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升