基于特征对齐和特征融合的半监督目标检测算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Semi-supervised Object Detection Algorithm Based on Feature Alignment and Feature Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    目的 针对半监督目标检测导致数据特征表示不充分,数据样本类不均衡等问题,提出一种基于特征对齐和 特征融合的半监督目标检测方法。 方法 在常见的半监督目标检测框架中,伪标签是完全根据分类分数生成的,然 而,高置信度预测并不总是保证准确的 bbox 定位。 为了解决定位不准确问题和特征表示不充分问题,受 Consistent Teacher 中的 FAM-3D 算法启发,考虑分类和定位的最优特征可能在不同尺度上,引入 T-head 特征对齐头算法,在 Unbiased Teacher V2 中成功地将分类和定位分支进行对齐,并且引入 ASFF,通过空间过滤冲突信息的方法来抑制 不一致性,从而提高了特征的尺度不变性,实现特征在空间上的融合;通过学习不同特征图之间的联系来解决特征 金字塔内部的不一致性问题。 结果 根据实验结果,改进的算法在 COCO 数据集、VOC 数据集上都有一定的比例提 升。 结论 改进的算法可以有效减轻数据表示不充分和数据样本类不均衡问题,同时也提高了算法的精度。

    Abstract:

    Objective In response to issues such as insufficient data feature representation and imbalanced sample classes in semi-supervised object detection a semi-supervised object detection method based on feature alignment and feature fusion was proposed. Methods In common semi-supervised object detection frameworks pseudo-labels are generated solely based on classification scores. However high-confidence predictions do not always fully guarantee accurate bbox positioning. In order to solve problems of inaccurate positioning and insufficient feature representation inspired by the FAM-3D algorithm in the Consistent Teacher considering that the optimal features for classification and positioning may be at different scales the T-head feature alignment head algorithm was introduced and the classification and positioning branches were successfully aligned in Unbiased Teacher V2. Additionally ASFF was introduced to suppress inconsistency by spatially filtering conflict information thereby improving the scale invariance of features and achieving spatial fusion of features. The internal inconsistencies within the feature pyramid were addressed by learning the connections between different feature maps. Results According to experimental results the improved algorithm demonstrated certain performance improvements on the COCO dataset and VOC dataset. Conclusion The proposed algorithm effectively alleviates issues of insufficient data representation and imbalanced sample classes while also enhancing algorithm accuracy.

    参考文献
    相似文献
    引证文献
引用本文

汤文兵,李 菲.基于特征对齐和特征融合的半监督目标检测算法[J].重庆工商大学学报(自然科学版),2025,(1):35-41
TANG Wenbing LI Fei. Semi-supervised Object Detection Algorithm Based on Feature Alignment and Feature Fusion[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2025,(1):35-41

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-24
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升