摘要:目的 现有的基于图神经网络( GNN) 的推荐方法忽略了会话中有价值用户在项目上的时间驻留信息,无法 解决用户无意识点击带来的影响,同时忽略图神经网络中隐藏因素的表达能力,针对以上问题,提出一种融合时间 驻留信息的图神经网络会话推荐模型( Graph Neural Network Session-based Recommendation Based on Fusion of Time Resident Information, TRGNN) 。 方法 首先,对用户在各个项目上的驻留时间信息进行处理,通过时间图神经网络 得到时间特征;其次,应用多头注意力机制增强因素的表达能力更好地提取项目特征,TRGNN 将时间特征与项目 特征进行融合得到最终特征,通过注意力网络得到全局上下文和局部上下文;最后,通过预测层得到最终推荐结 果。 结果 在 Diginetica 和 Yoochoose 两个真实数据集上进行对比实验,实验结果表明:相较于最优基线模型,本模型 在 Mrr@ 20 评价指标下分别提升了 1. 57%和 3. 30%,在 Recall@ 20 指标下分别提升了 1. 10%和 0. 66%。 结论 本模 型实现了更好的推荐效果,能更好地挖掘隐藏信息,充分应用时间特征和项目隐藏特征来提高推荐准确率,降低用 户误触对推荐准确率的影响。