一类矩阵方程的解及其应用
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Solutions to a Class of Matrix Equations and Their Applications
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    目前许多力学问题,如计算物理、地质学、结构设计、分子光谱学、电学、参数识别、自动控制、商务智能、线性 系统理论、大数据分析与动态分析等领域,都要依赖于矩阵方程。 研究了矩阵方程 AX = B 的求解问题,给出了矩 阵方程 AX = B 有解的新判别条件及其通解表达式,推广了矩阵方程 AX = B 的判解条件和通解形式;例题表明简化 了矩阵方程 AX = B 的求解过程,同时也简化了向量组的线性表示式和基到基的过渡矩阵计算,这对于充实矩阵方 程的求解理论和简化计算均是有益的。

    Abstract:

    Matrix equations are crucial in solving many problems in various fields such as mechanics computational physics geology structural design molecular spectroscopy electrical engineering parameter identification automatic control business intelligence linear system theory big data analysis and dynamic analysis. This study investigates the solution of the matrix equation AX = B providing new criteria for the existence of solutions and their general expressions. It extends the conditions for solvability and the general forms of the solutions of the matrix equation AX = B. Examples demonstrate that this approach simplifies the solution process of the matrix equation AX = B as well as the calculation of linear representations of vector sets and the transition matrix between bases. This contributes to enriching the solution theory of matrix equations and simplifying computations.

    参考文献
    相似文献
    引证文献
引用本文

方建卫,袁晖坪.一类矩阵方程的解及其应用[J].重庆工商大学学报(自然科学版),2024,(6):121-125
FANG Jianwei YUAN Huiping. Solutions to a Class of Matrix Equations and Their Applications[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2024,(6):121-125

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-11
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升