基于 FORUKF-UKF 的锂电池 SOC 联合估计研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Research on the Joint Estimation of Lithium Battery SOC Based on FORUKF-UKF
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    目的 针对传统卡尔曼滤波算法估算锂电池的荷电状态( SOC) ,其值用 RSOC 准确度不足的问题,提出一种分 数阶鲁棒无迹卡尔曼滤波联合无迹卡尔曼滤波 ( FORUKF - UKF) 方法估计锂电池 SOC。 方法 在动态应力测试 ( DST) 下,采用自适应遗传算法( AGA) 对锂电池分数阶模型( FOM) 进行参数辨识;在 FOM 的基础上将无迹变换 (UT) 技术与 H∞ 观测器结合提出 FORUKF 算法,并与 UKF 联合实现 SOC 估计;联合估计器中的 UKF 实时估计电 池模型中的欧姆电阻 R0 ,并反馈至 FORUKF 算法中估算得到 SOC;最后在北京动态应力测试( BJDST) 下与拓展卡 尔曼滤波( EKF) 、分数阶无迹卡尔曼滤波( FOUKF) 进行比较验证。 结果 在估计 SOC 的过程中 FORUKF-UKF 方法 相对于 EKF、FOUKF 和 FORUKF 始终保持了最高的估计精度,展现了更好的鲁棒性。 结论 FORUKF-UKF 方法在 估计锂电池 SOC 方面比 EKF、FOUKF 和 FORUKF 算法具备更好的准确性和鲁棒性。

    Abstract:

    Objective In order to address the issue of inadequate accuracy in estimating the state of charge SOC of lithium batteries using traditional Kalman filtering algorithms this study proposes a fractional order robust unscented Kalman filter-based unscented Kalman filter FORUKF-UKF method for SOC estimation. The estimated value of the lithium battery?? s state of charge is denoted by RSOC . Methods An adaptive genetic algorithm AGA was employed to identify the parameters of a fractional order model FOM of the lithium battery during dynamic stress testing DST . The FORUKF algorithm was proposed by combining the unscented transform UT technique with the H∞ observer based on FOM and the SOC estimation was jointly realized with the UKF. The UKF in the joint estimator realized real-time estimation of the Ohmic resistance R0 in the battery model and fed it back to the FORUKF algorithm to estimate SOC. Finally comparisons and verifications were conducted with extended Kalman filtering EKF and fractional order unscented Kalman filtering FOUKF using Beijing dynamic stress testing BJDST . Results The results showed that the FORUKF-UKF method consistently achieved the highest estimation accuracy in the SOC estimation process compared with EKF FOUKF and FORUKF demonstrating better robustness. Conclusion The FORUKF-UKF method has better accuracy and robustness than the EKF FOUKF and FORUKF algorithms in estimating the SOC of lithium batteries.

    参考文献
    相似文献
    引证文献
引用本文

骆文飞,邢丽坤.基于 FORUKF-UKF 的锂电池 SOC 联合估计研究[J].重庆工商大学学报(自然科学版),2024,(6):99-106
LUO Wenfei XING Likun. Research on the Joint Estimation of Lithium Battery SOC Based on FORUKF-UKF[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2024,(6):99-106

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-11
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升