基于 STE-TCN 的中短期电力负荷预测
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Short- and Medium-term Power Load Forecasting Based on STE-TCN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    目的 针对传统电力负荷预测模型对长序列预测精度低的问题,提出一种结合跳级卷积连接与时间编码网 络的新型时序卷积神经网络( TCN) 模型———STE-TCN 模型。 方法 首先对 TCN 模型加入跨周期的膨胀卷积通道 ( Skip-convolution) 提取电力数据周期信息;再进行特征融合得到 Skip-TCN 网络,使网络抓取周期规律,增加信息 利用长度;最后设计日期编码网络( Time encoding network) 捕捉生活周期和季节性特征,与 Skip-TCN 进行特征融 合得到 STE-TCN 模型,实现对电力负荷数据长序列预测。 结果 实验表明:在与 TCN 模型和传统时序网络的对比 下,Skip-TCN 的预测精度均有提升,在预测长度更长的测试上提升尤为明显。 结论 实验结果验证了通过对更长跨 度时序关系的捕捉,STE-TCN 网络改进方法有效提升了对长序列电力负荷的预测精度。

    Abstract:

    Objective In response to the problem of low prediction accuracy of traditional power load forecasting models for long sequences a novel temporal convolutional neural network TCN model called STE-TCN combining skip-level convolutional connections and time encoding networks was proposed. Methods Firstly skip-convolution channels across periods were added to the TCN model to extract cycle information from power data. The Skip-TCN network was obtained by fusing the features so that the network captures the cycle pattern and increases the length of information utilization. Finally the time encoding network was designed to capture the life cycle and seasonal features and the STE-TCN model was obtained by fusing the features with the Skip-TCN. The long sequence prediction of power load data was realized. Results Experimental results show that compared with the TCN model and traditional sequential networks Skip-TCN exhibited improved prediction accuracy especially in longer prediction tests. Conclusion Experimental results validate that by capturing longer-spanned temporal relationships the improved method of STE-TCN network effectively enhances the prediction accuracy of long sequence power load data.

    参考文献
    相似文献
    引证文献
引用本文

郑晓亮 ,束庆宇.基于 STE-TCN 的中短期电力负荷预测[J].重庆工商大学学报(自然科学版),2024,(6):59-64
ZHENG Xiaoliang SHU Qingyu. Short- and Medium-term Power Load Forecasting Based on STE-TCN[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2024,(6):59-64

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-11
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升