基于 Transformer 块的混合域网络稀疏角度 CT 成像
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


ybrid Domain Network for Sparse View CT Imaging Based on Transformer Blocks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    目的 针对计算机断层扫描( Computed Tomography,CT) 中由于不完全扫描数据导致图像噪声伪影严重的问 题,提出一种基于 Transformer 块的混合域网络稀疏角度 CT 成像算法( Hybrid Domain network for sparse view CT imaging based on Transformer,HDTransformer) 。 方法 算法的主要思想是借助于新型的 Transformer 网络,构建适用于 多阶段稀疏角度 CT 投影数据及图像数据的处理流,以提高稀疏角度 CT 图像重建质量;与现有两阶段混合域处理 方法相比,本方法采用图像域-投影域-图像域三阶段混合处理流程,通过多阶段信息的联合互补提高成像质量;此 外,针对不同阶段数据噪声伪影特点设计不同的 Transformer 块,以实现差异化的处理;更进一步,算法采用可微分 的解析重建和投影运算,建立投影域与图像域数据的转换,最终实现端到端的稀疏角度 CT 优质成像流。 结果 通 过 Mayo 数据实验验证,其视觉结果表明:处理后的不同部位 CT 图像噪声伪影均能够得到较好的抑制;量化结果表 明:处理后的 CT 图像峰值信噪比和特征相似性均优于对比方法。 结论 实验的定性和定量结果表明:所提算法在 去除图像伪影噪声方面要优于其他算法,具有更高的质量,验证了该方法的有效性。

    Abstract:

    A hybrid domain network for sparse view CT imaging based on Transformer HDTransformer was proposed to address the serious image noise artifacts caused by incomplete scanning data in computed tomography CT . Methods The main concept of the algorithm was to utilize a novel Transformer network to construct a processing flow suitable for multi-stage sparse view CT projection data and image data to improve the quality of sparse view CT image reconstruction. In comparison to existing two-stage hybrid domain processing methods this approach adopted a three-stage hybrid processing flow of image domain-projection domain-image domain enhancing imaging quality through the joint complementary information of multiple stages. Furthermore different Transformer blocks were designed based on the characteristics of noise and artifacts in data at different stages for differentiated processing. Moreover the algorithm adopted differentiable analytical reconstruction and projection operations to establish the conversion of data between projection domain and image domain ultimately achieving end-to-end high-quality sparse view CT imaging flow. Results Through Mayo data experimental verification the visual results showed that the processed CT images of different parts effectively suppressed noise artifacts. The quantization results showed that the peak signal-to-noise ratio and feature similarity of the processed CT images were better than those of the comparison method. Conclusion The qualitative and quantitative results of the experiment indicate that the proposed algorithm outperforms other algorithms in removing image artifacts and has higher quality verifying the effectiveness of this method.

    参考文献
    相似文献
    引证文献
引用本文

张庭宇,吴凡,金潼,孙宇,刘进,亢艳芹.基于 Transformer 块的混合域网络稀疏角度 CT 成像[J].重庆工商大学学报(自然科学版),2024,41(5):38-48
ZHANG Tingyu, WU Fan, JIN Tong, SUN Yu, LIU Jin KANG, Yanqin. ybrid Domain Network for Sparse View CT Imaging Based on Transformer Blocks[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2024,41(5):38-48

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-29
×
2023年《重庆工商大学学报(自然科学版)》影响因子稳步提升