多分支融合变分细化蒸馏的跨模态行人重识别
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Cross-modal Person Re-identification Based on Multi-branch Fusion Variational Refinement Distillation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    目的 针对目前跨模态行人重识别研究中对行人细腻区域关注不足以及网络易受噪声影响的问题,提出一 种多分支融合变分细化蒸馏学习方法。 方法 首先,网络通过多分支聚合不同粒度的全局特征,督促深层网络学习 两种模态的全局信息和细节信息,丰富行人的特征描述符;然后,结合变分细化蒸馏策略,对特征信息进行再压缩, 保留与任务相关的深层信息,同时丢弃无用的干扰物;最后,将网络捕获的不同特征用多种损失函数联合监督,以 提高网络对行人表征的敏感度。 结果 所提方法在 SYSU-MM01 数据集的全搜索模式下,R-1 和 66. 93%和 mAP 分别达到 65. 25%;在 RegDB 数据集的可见光到红外设置下,R-1 和 mAP 分别达到 78. 26%、77. 83%。 结论 通过 消融实验、对比实验和可视化实验,充分验证了所提方法的有效性。

    Abstract:

    Objective Aiming at the problem of insufficient attention to the delicate area of pedestrians and the vulnerability of the network to noise in the current cross-modal person re-identification research this paper proposed a multi-branch fusion variational refinement distillation learning method. Methods Firstly the network aggregated global features of different granularity through multiple branches urging the deep network to learn the global information and details of the two modes to enrich the feature descriptors of pedestrians. Then combined with the variational refinement distillation strategy the feature information was recompressed the deep information related to the task was retained and the useless interferences were discarded. Finally the different features captured by the network were jointly supervised by multiple loss functions to improve the sensitivity of the network to pedestrian representation. Results R-1 and mAP reached 66. 93% and 65. 25% respectively with the proposed method in the full search mode of the SYSU-MM01 dataset the R-1 and mAP reached 78. 26% and 77. 83% respectively in the visible to infrared setting of the RegDB dataset. Conclusion Through ablation experiments comparative experiments and visualization experiments the effectiveness of the proposed method is fully verified.

    参考文献
    相似文献
    引证文献
引用本文

王路遥;王凤随;陈元妹.多分支融合变分细化蒸馏的跨模态行人重识别[J].重庆工商大学学报(自然科学版),2024,(4):77-85
WANG Luyao ; WANG Fengsui ; CHEN Yuanmei . Cross-modal Person Re-identification Based on Multi-branch Fusion Variational Refinement Distillation[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2024,(4):77-85

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-05
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升