摘要:目的 现有的参数优化方法普遍存在时间成本较大、内存占用较大、难以解决高维数据情况、难以找到全局 最优解等问题,DYCORS 算法可以在节约时间成本和内存的前提下,对高维数据问题也能找到全局最优解,故针对 现有参数优化方法存在的问题,提出了针对 OVA-SVM 模型参数分块优化的 YDYCORS 算法。 方法 OVA-SVM 的参 数中对模型影响较大的有惩罚参数 C、核函数类型 k、RBF 核函数参数 γ、ploy 核函数参数 d 以及迭代终止参数 t,由 于同时调节 5 个参数计算量较大,难以找到最优解,而 DYCORS 算法可以减少迭代次数,对于高维数据问题也同样 适用,在 DYCORS 算法的基础上进行参数分块调节:先调节影响最大的参数 C、k、γ,再固定最优参数 C、k、γ,调节 剩余参数中影响较大的参数 d 和 t,最后同时调节已获得的 5 个最优参数,如此对参数进行分块调节,提升参数优 化的效果。 结果 通过 MNIST 和 IRIS 两个数据集上的实验结果对比可以发现:运用 YDYCORS 算法对 OVA-SVM 参 数进行分块调节后,能得到与手动调参和直接用 DYCORS 同时调节 5 个参数更高的模型准确率,从而也能进一步 提升模型性能。 结论 最终实验结果表明:DYCORS 算法能有效解决 OVA-SVM 参数优化中时间成本较大、内存占 用较大、难以解决高维数据、难以找到全局最优解等问题,尤其是改进后的 YDYCORS 算法能进一步提升 OVASVM 的模型准确率,获得较佳的模型效果。