基于 Retinex 理论的低光图像增强算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为了解决低光照图像存在的对比度低、噪声大等问题,提出一种基于 Retinex 理论的卷积神经网络增强模型 (Retinex-RANet)。 它包括分解网络、降噪网络和亮度调整网络 3 部分:在分解网络中融入残差模块(RB)和跳跃连 接,通过跳跃连接将第一个卷积层提取的特征与每一个 RB 提取的特征融合,以确保图像特征的完整提取,从而得 到更准确的反射分量和光照分量;降噪网络以 U-Net 网络为基础,同时加入了空洞卷积和注意力机制,空洞卷积能 提取更多的图像相关信息,注意力机制可以更好地去除反射分量中噪声,还原细节;亮度调整网络由卷积层和 Sigmoid 层组成,用来提高光照分量的对比度;最后将降噪网络去噪后的反射分量和亮度调整网络增强后的光照分 量融合,得到最终的增强结果。 实验结果显示:Retinex-RANet 在主观视觉上不仅提高了低光图像的亮度,还提高了色彩深度和对比度,在客观评价指标上,相较于 R2RNet,PSNR 值上升了 4. 4%,SSIM 值上升了 6. 1%。 结果表 明:Retinex-RANet 具有更好的低光图像增强效果

    Abstract:

    In order to solve the problems of low contrast and high noise of low-light images a convolutional neural network enhancement model based on Retinex theory Retinex-RANet is proposed. It includes three parts the decomposition network the noise reduction network and the brightness adjustment network. The residual module RB and the jump connection were incorporated into the decomposition network and the features extracted by the first convolutional layer were fused with each RB extracted feature through the jump connection to ensure the complete extraction of the image features resulting in more accurate reflection and illumination components. The noise reduction network was based on the U-Net network and the cavity convolution and attention mechanism were added at the same time so as to extract more image-related information. The attention mechanism can better remove the noise in the reflected component and restore the details. The brightness adjustment network consists of a convolutional layer and a Sigmoid layer which is used to increase the contrast of the light components. Finally the reflection component after denoising by the noise reduction network and the light component after the brightness adjustment network were fused to obtain the final enhancement result. Experimental results show that Retinex-RANet not only improves the brightness of low-light images in subjective vision but also improves the color depth and contrast. In terms of objective evaluation indicators compared with R2RNet the PSNR value increased by 4. 4% and the SSIM value increased by 6. 1%. The results show that Retinex-RANet has better low-light image enhancement.

    参考文献
    相似文献
    引证文献
引用本文

史宇飞,赵佰亭.基于 Retinex 理论的低光图像增强算法[J].重庆工商大学学报(自然科学版),2023,40(6):61-67
SHI Yufei, ZHAO Baiting.[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2023,40(6):61-67

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-11-10
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升