基于自适应流形正则化自表示的无监督特征选择算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对基于流形正则化自表示(MRSR)的无监督特征选择算法直接从原始的样本空间构造相似矩阵可能会 导致重构空间中样本的相似性描述得不够准确的问题,提出了基于自适应流形正则化自表示的无监督特征选择 (AMRSR)算法。 基于自适应流形正则化自表示的无监督特征选择算法在 MRSR 算法的基础上通过对相似矩阵施 加概率最近邻约束将相似矩阵的学习嵌入到优化过程中,在重构空间中自适应地学习样本的相似性,使得在每一 次迭代中获取更加精确的样本局部几何流形结构,从而选择具有代表性且保持局部几何流形结构的特征。 最后, 在四个公开数据集上进行了大量的对比实验,通过将算法的特征选择结果用于 K-means 聚类并采取两种常见的聚 类评价指标:聚类精确度和归一化互信息评价聚类效果。 实验结果表明,AMRSR 算法与现有的一些算法相比有更 高的聚类精确度和归一化互信息,进一步表明该算法特征选择效果更好。

    Abstract:

    Unsupervised feature selection algorithm based on manifold regularization self-representation MRSR directly constructed similarity matrix from the original sample space which might lead to inaccurate similarity description of samples in the reconstructed space. To solve this problem an unsupervised feature selection algorithm based on adaptive manifold regularization self-representation AMRSR was proposed. On the basis of MRSR algorithm unsupervised feature selection algorithm based on adaptive manifold regularization self-representation embedded the learning of similar matrix into the optimization process by imposing probabilistic nearest neighbor constraints on similar matrix and adaptively learned the similarity of samples in the reconstructed space so that more accurate local geometric manifold structure of samples could be obtained in each iteration and then representative features with local geometric manifold structure could be selected. Finally a large number of comparative experiments were carried out on four public datasets. By applying the feature selection results of the algorithms to K-means clustering two common clustering evaluation indexes were adopted clustering accuracy and normalized mutual information to evaluate the clustering effect. Experimental results show that the AMRSR algorithm has higher clustering accuracy and normalized mutual information than some existing algorithms which further indicates that the feature selection effect of this algorithm is better.

    参考文献
    相似文献
    引证文献
引用本文

宋 雨,许王琴,李荣鹏,宋学力,肖玉柱.基于自适应流形正则化自表示的无监督特征选择算法[J].重庆工商大学学报(自然科学版),2023,40(6):44-52
SONG Yu, XU Wangqin, LI Rongpeng, SONG Xueli, XIAO Yuzhu.[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2023,40(6):44-52

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-11-10
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升