基于黏菌优化极限学习机的煤矸石多光谱识别
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Multi-spectral Identification of Coal and Gangue Based on Slime Mold Algorithm Extreme Learning Machine
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    煤和矸石的精准辨识是煤矸分选和煤炭清洁高效利用的重要前提,针对传统方法存在效率低、需加装辐射 隔离以及受环境干扰等诸多不足,提出了基于多光谱图像特性和光谱特性来识别煤和矸石,构建黏菌优化极限学 习机(Slime Mold Algorithm Extreme Learning Machine,SMA-ELM)的分类模型。 搭建多光谱数据采集系统完成煤与 矸石的光谱图像采集,通过 LBP 对光谱图像进行特征提取并使用 PCA 主成分分析对提取后的特征向量降维,输入 SMA-ELM 分类模型、蚁狮优化极限学习机(Antlion Algorithm Optimized Extreme Learning Machine,ALO-ELM)分类 模型、鲸鱼优化极限学习机(Whale Algorithm Optimized Extreme Learning Machine,WOA-ELM)分类模型进行对比, 重点研究不同波长响应下煤和矸石的辨识精度来筛选最佳波长,通过多评价指标对优化后的最优波段进行比较。 实验结果表明, SMA -ELM 分类效果最佳,第 6 波段为最优波段, SMA - ELM 在该波段的平均识别准确率为 95. 08%,煤和矸石的识别 F1-Score 分别为 96. 47%和 92. 68%,用时 10. 6 s。 所提出的方法可以实现煤和矸石的精 准识别,这对煤和矸石的智能分选具有重要的研究意义。

    Abstract:

    Accurate identification of coal and gangue is an important prerequisite for coal and gangue sorting and clean and efficient utilization of coal. In view of the many shortcomings of traditional methods such as low efficiency the need to install radiation isolation and environmental interference a classification model called Slime Mold Algorithm Extreme Learning Machine SMA-ELM was proposed to recognize coal and gangue based on multi-spectral image characteristics and spectral characteristics. A multi-spectral data acquisition system was built to complete the acquisition of spectral images of coal and gangue. The extracted feature vectors were downscaled by LBP and PCA principal component analysis, and input to SMA-ELM classification model Antlion Algorithm Optimized Extreme Learning Machine ALO-ELM classification model and Whale Algorithm Optimized Extreme Learning Machine WOA-ELM classification model for comparison. It focused on the recognition accuracy of coal and gangue under different wavelength responses to screen the best wavelength and the optimized optimal wavelengths were compared by multiple evaluation indexes. The experimental results showed that SMA-ELM had the best classification effect and the 6th band was the optimal band the average recognition accuracy of SMA-ELM in this band was 95. 08% and the recognition F1-Scores of coal and gangue were 96. 47% and 92. 68% respectively with a time of 10. 6 s. The proposed method can achieve the accurate recognition of coal and gangue which has important research significance for the intelligent separation of coal and gangue.

    参考文献
    相似文献
    引证文献
引用本文

周孟然,凌 胜,来文豪,卞 凯,朱梓伟,沈汝涵.基于黏菌优化极限学习机的煤矸石多光谱识别[J].重庆工商大学学报(自然科学版),2023,40(5):1-7
ZHOU Mengran, LING Sheng, LAI Wenhao, BIAN Kai, ZHU Ziwei, SHEN Ruhan. Multi-spectral Identification of Coal and Gangue Based on Slime Mold Algorithm Extreme Learning Machine[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2023,40(5):1-7

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-09-19
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升