带有logistic源的三维趋化系统弱解的最终光滑性
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


The Final Smoothness of the Weak Solution of the Three-dimensional Chemotaxis System with Logistic Source
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    基于三维趋化系统弱解的整体存在性的结果,进一步考虑了一类带有 logistic 源抛物-抛物型趋 化方程组在三维情形时对应的齐次诺依曼初边值条件下弱解的最终光滑性;通过构造能量泛函并利用 Sobolev 最大正则性理论、Sobolev嵌入定理、Gagliardo-Nirenberg不等式、Young 不等式、 H?lder 不等式、Poincaré不等式、紧嵌入定理以及 Gronwall 不等式得到解的高阶正则性估计;结果表明:对于任意非负且适 当的初始值,可以证明到系统的弱解在一定的等待时间后变成经典解。

    Abstract:

    Based on the results of the global existence of weak solutions of three-dimensional chemotaxis system, this paper further considers the final smoothness of the weak solutions of a class of parabolic chemotaxis equations with logistic source under the corresponding homogeneous Neumann initial boundary value conditions in three-dimensional case. In this paper, the higher-order regularity estimation of the solution is obtained by constructing the energy functional and using Sobolev maximum regularity theory, Sobolev embedding theorem, Gagliardo Nirenberg inequality, Young inequality, H?lder inequality, Poincaré inequality, compact embedding theorem and Gronwall inequality. The results show that for any nonnegative and appropriate initial value, it can be proved that the weak solution of the system becomes a classical solution after a certain waiting time.

    参考文献
    相似文献
    引证文献
引用本文

姜永峰.带有logistic源的三维趋化系统弱解的最终光滑性[J].重庆工商大学学报(自然科学版),2022,39(4):72-76
JIANG Yong-feng. The Final Smoothness of the Weak Solution of the Three-dimensional Chemotaxis System with Logistic Source[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2022,39(4):72-76

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-06-27