具有时间相关系数和双参数扰动的捕食者--食饵模型分析*
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Analysis of a Predator-prey Model with Time-related Coefficients and Two Parameters Perturbation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对一类Holling II捕食者-食饵模型, 在模型系数与时间相关并具有两个噪声扰动的环境下, 讨论了该模型系统的一些动力学行为问题。为了研究模型长时间的动力学特征, 利用反证法证得了模型正解的存在唯一性, 确保了模型正解的稳定性;再通过构造Lyapunov函数, 并利用It公式和切比雪夫不等式探究了该模型的随机最终有界性, 保证了模型系统是合理的;进一步考虑系统的持续性和永久存在性, 运用离散Hlder不等式和矩不等式等随机微分不等式探究了其一致Hlder连续性和随机持久性,此外, 还利用指数鞅不等式和Borel-Cantelli引理得到了该系统灭绝的充分性条件;最后, 引入数值模拟验证了所得理论结果的正确性。

    Abstract:

    For a Holling II predator-prey model with time-related coefficients and two parameters perturbation, some dynamical behaviors of the model are discussed. In order to research the long-term dynamic characteristics of the model, the existence and uniqueness of the positive solution is proved by using contradiction to ensure the stability of the positive solution of the model, and then, by constructing Lyapunov function, and using It formula and Chebyshev inequality, stochastic ultimate boundedness of the model is explored, which ensures that the system is reasonable. Thus, the continuity and permanence of the system can be further considered, and by using discrete Hlder inequality and the moment inequality and other stochastic differential inequalities, uniformly Hlder-continuous and stochastic permanence of the system is obtained. Moreover, the sufficient conditions for the system to be extinct are given by using exponential martingale inequality and Borel-Cantelli lemma. At last, some numerical simulations are introduced to verify the correctness of the theoretical results.

    参考文献
    相似文献
    引证文献
引用本文

魏宁.具有时间相关系数和双参数扰动的捕食者--食饵模型分析*[J].重庆工商大学学报(自然科学版),2021,38(6):89-95
WEI Ning. Analysis of a Predator-prey Model with Time-related Coefficients and Two Parameters Perturbation[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2021,38(6):89-95

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-11-29
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升