递归(分片)仿射分形插值数值模拟与盒维数研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Research on Box Dimension and Numerical Simulations of Recurrent(Piecewise) Affine Fractal Interpolation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    分析了Barnsley M F的经典文献中递归仿射分形插值的数值模拟问题,利用Matlab与随机迭代算法,给出了递归仿射分形插值算例的随机迭代算法,得到相应分形插值曲线。递归仿射分形插值把较长的原像区间Ji′=[xl,xm]压缩映射到更短的像区间Ji=[xi-1,xi]时,有3种情况:(1) JiJi′; (2) JiJi′且Ji∩Ji′=Φ;(3) JiJi′,但是Ji∩Ji′≠Φ。根据递归仿射分形插值与分片分形插值,对以上3种情形进行了随机迭代数值模拟,给出了算法流程与详细的程序代码,这些数值分析是对分形插值理论的补充。最后,利用粒子群最优化算法给出仿射分形插值函数的盒维数最优解。

    Abstract:

    This paper analyzes the numerical simulation of recurrent affine fractal interpolation in M.F.Barnsley’s classical literature[1], Recurrent Iterated Function Systems.By using MATLAB and random iterative algorithm, the random iterative algorithm of recurrent affine fractal interpolation example is given, and the corresponding fractal interpolation curve is obtained.When the recurrent affine fractal interpolation maps the longer original image range Ji′=[xl,xm] compression to the shorter image range Ji=[xi-1,xi],there are three situations:(1)JiJi′, (2)JiJi′ and Ji∩Ji′=Φ,(3)JiJi′andJi∩Ji′≠Φ。According to the recurrent affine fractal interpolation and piecewise fractal interpolation, the random iterative numerical simulation of the above three cases is carried out, and the algorithm process and detailed program codes are given.The numerical analysis is a supplement to the fractal interpolation theory.Finally, the optimal solution of box dimension of affine fractal interpolation function is given by particle swarm optimization algorithm.

    参考文献
    相似文献
    引证文献
引用本文

袁利国,余荣忠,旷菊红.递归(分片)仿射分形插值数值模拟与盒维数研究[J].重庆工商大学学报(自然科学版),2021,38(3):122-128
YUAN Li-guo, YU Rong-zhong, KUANG Ju-hong. Research on Box Dimension and Numerical Simulations of Recurrent(Piecewise) Affine Fractal Interpolation[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2021,38(3):122-128

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-05-28
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升