一类具ψ-Caputo导数的分数阶微分方程边值问题解的存在性
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Existence of Solutions to Boundary Value Problems for a Class of Fractional Differential Equations withψ-Caputo Derivatives
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    分数阶微分方程的研究可以解决数学、空气动力学、经济学、聚合物流变学等多个领域的复杂问题;在一类具ψ-Caputo导数的分数阶微分方程边值问题中,其中边值条件包含多点和积分,首先由ψ-Caputo导数的定义和性质获得解的等价积分方程形式,接着该边值问题解的唯一性与存在性分别由Banach压缩映像原理和Schauder不动点定理获得,最后,通过一个实例说明了结果的应用性。

    Abstract:

    The study of fractional differential equation can settle numerous tanglesome matters in mathematics, aerodynamics, economics, polymer rheology and other fields. In a class of boundary value problems for fractional differential equations with ψ- Caputo derivatives, the boundary value conditions contain multiple points and integrals, the form of the solution of the isovalent integral equation is first gained from the definition and properties of ψ- Caputo derivative, afterwards, the uniqueness and existence of the solution of the boundary value problem are gained by the Banach contraction mapping principle and Schauder fixed point theorem respectively. In the end, the application of the result is illustrated by an example.

    参考文献
    相似文献
    引证文献
引用本文

董伟萍,周宗福.一类具ψ-Caputo导数的分数阶微分方程边值问题解的存在性[J].重庆工商大学学报(自然科学版),2021,38(3):117-121
DONG Wei-ping, ZHOU Zong-fu. Existence of Solutions to Boundary Value Problems for a Class of Fractional Differential Equations withψ-Caputo Derivatives[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2021,38(3):117-121

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-05-28
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升