DOI:

The Integer Solution of the Diophantine Equation x2+4n=y11
Author:
Affiliation:

Fund Project:

• 摘要
• |
• 图/表
• |
• 访问统计
• |
• 参考文献
• |
• 相似文献
• |
• 引证文献
• |
• 资源附件
摘要:

应用代数数论以及同余法等初等方法讨论不定方程x2+4n=y11的整数解情况，证明了不定方程x2+4n=y11在x为奇数，n≥1时无整数解； 不定方程x2+4n=y11在n∈{1,8,9,10}时均无整数解; 不定方程x2+4n=y11有整数解的充要条件是n≡0(mod 11)或n≡5(mod 11)，且当n≡0(mod 11)时,其整数解为(x,y)=(0,4m)；当n≡5(mod 11)时,其整数解为 (x,y)=(±211m+5,22m+1)， 这里的m为非负整数， 验证了k=11时猜想1成立。

Abstract:

The Diophantine equation,as the oldest branch of nmber theory,is very rich in content.The so-called Diophantine equation refers to the equation where the number of unknowns is more than the number of equations.The integer solution of x2+4n=y11 is studied by algebraic number theory and congruence and so on.It proves that the Diophantine equation x2+4n=y11 has no integer solution when x≡1(mod 2),n≥1, and shows that the Diophantine equation x2+4n=y11(n∈{1,8,9,10})has no integer solution.So the Diophantine equation x2+4n=y11 has integer solutions if and only if n≡0,5(mod11),and (x,y)=(0,4m) when n=11m, (x,y)=(211m+5,22m+1) when n=11m+5, where m is a nonnegative integer.It implies that Conjecture 1 holds for k=11.

参考文献
相似文献
引证文献
##### 引用本文

CAI Xiao-qun. The Integer Solution of the Diophantine Equation x2+4n=y11[J]. Journal of Chongqing Technology and Business University(Natural Science Edition）,2021,38(1):99-104

• 点击次数:
• 下载次数:
##### 历史
• 收稿日期:
• 最后修改日期:
• 录用日期:
• 在线发布日期: 2021-01-16