丢番图方程x2+(2n)2=y9(1≤n≤7)的整数解
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


The Integer Solution of the Diophantine Equations x2+(2n)2=y9(x,y,n∈〖WTHZ〗Z〖WTBX〗,1≤n≤7)
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    在高斯整环中,利用代数数论理论和同余理论的方法研究丢番图方程x2+(2n)2=y9(x,y,n∈〖WTHZ〗Z〖WTBX〗,1≤n≤7)的整数解问题;首先统计了1≤n≤7时已有的证明结果,之后在n=3,5,6,7时对x分奇数和偶数情况讨论,证明了n=3,5,6,7时丢番图方程x2+(2n)2=y9无整数解,即证明了丢番图方程x2+(2n)2=y9(x,y,n∈〖WTHZ〗Z〖WTBX〗,1≤n≤7)无整数解。

    Abstract:

    In Gauss domain,the problem of integer solution of the Diophantine equation x2+(2n)2=y9(x,y,n∈〖WTHZ〗Z〖WTBX〗,1≤n≤7)is discussed by using the methods of algebraic number theory and congruence theory .First of all,finding out the results that have been proven when 1≤n≤7.Then,by discussing the two cases that x is odd and x is even respectively,we proved that the Diophantine equation x2+(2n)2=y9(x,y,n∈〖WTHZ〗Z〖WTBX〗) has no integer solution when n=3,5,6,7.Finally the conclusion is reached that the Diophantine equation x2+(2n)2=y9(x,y,n∈〖WTHZ〗Z〖WTBX〗) has no integer solution when 1≤n≤7.

    参考文献
    相似文献
    引证文献
引用本文

陈一维, 柴向阳.丢番图方程x2+(2n)2=y9(1≤n≤7)的整数解[J].重庆工商大学学报(自然科学版),2021,38(1):92-98
CHEN Yi-wei, CHAI Xiang-yang. The Integer Solution of the Diophantine Equations x2+(2n)2=y9(x, y,n∈〖WTHZ〗Z〖WTBX〗,1≤n≤7)[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2021,38(1):92-98

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-01-16
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升