Abstract:There is no general conclusion about the solution of x3±1=Dy2(D>0) type Diophantine equation.The solvability of x3±1=Dy2 for Diophantine equation when D=1379 is studied.By using congruence, recursive sequence, quadratic remainder and some properties of solutions of Pell equations,it is proved that the Diophantine equation x3+1=1379y2has only integer solutions (x,y)=(-1,0),and that the Diophantine equation x3-1=1379y2 has only integer solutions (x,y)=(1,0).The algebraic method used can be extended to solve cubic Diophantine equations with large coefficients.