第一类卷积型Volterra积分方程的快速配置边值方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Fast Collocation Boundary Value Method for Convolutiontype Volterra Integral Equation of the First Kind
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对第一类卷积型Volterra积分方程的数值解,研究其快速算法;基于特殊的多步配置方法,利用未计算的近似值,构造了高阶数值格式;通过格式,将原积分方程离散为线性方程组,其中系数矩阵可分解为Toeplitz矩阵和稀疏矩阵;利用快速Fourier变换计算该线性方程组,运算量为O(Nlong N);数值例子验证了方法的高效性。

    Abstract:

    This paper is devoted to studying the fast numerical method for convolutiontype Volterra integral equation of the first kind. High order numerical schemes are devised by using special multistep collocation methods, which depend on numerical approximations of the solution in the next several steps. Then the original integral equation is discretized into a system of linear equations, and the coefficient matrix can be decomposed into a Toeplitz matrix and a sparse matrix. The fast calculation of linear equations is implemented by using fast Fourier transform in this paper, and the calculation amount is O(NlogN). Numerical examples are provided to demonstrate the efficiency of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

刘玲,杨镇.第一类卷积型Volterra积分方程的快速配置边值方法[J].重庆工商大学学报(自然科学版),2020,37(4):83-88
LIU Ling, YANG Zhen. Fast Collocation Boundary Value Method for Convolutiontype Volterra Integral Equation of the First Kind[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2020,37(4):83-88

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-07-14
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升