基于PSORBF神经网络的锂电池SOC估算
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


SOC Estimation of Lithium Battery Based on PSORBF Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对电动汽车锂电池荷电状态(State Of Charge,SOC)的精准估算,提出一种优化的径向基(Radial Basis Function,RBF)神经网络算法;通过粒子群(Particle Swarm Optimization,PSO)算法优化RBF神经网络的参数及结构,确定RBF神经网络中的基函数的宽度以及中心;根据锂电池的充、放电机理,将SOC的影响因子电压(U)、电流(I)、内阻(R)、温度(T)作为输入向量,在 Matlab中进行仿真实验;实验表明方法能够实现准确、快速、便捷的锂电池的SOC估算,其预测结果和实际测量结果的误差在4%以下,符合SOC预测误差5%的技术指标要求,对于电动汽车锂电池SOC的估算有着一定的实际应用意义。

    Abstract:

    An optimized Radial Basis Function (RBF) neural network algorithm was presented to accurately estimate the State Of Charge (SOC) of lithium batteries in electric vehicles. The parameters and structure of RBF neural network are optimized by Particle Swarm Optimization (PSO) algorithm, and the width and center of basis function in RBF neural network are determined. According to the charging and discharging mechanism of lithium batteries, voltage (U), current (I), internal resistance (R) and temperature (T) of the influence factors of SOC are taken as input vectors to conduct simulation experiments in Matlab. Experiments show that this method can achieve accurate, fast and convenient SOC estimation of lithium batteries. The error between prediction results and actual measurement results is less than 4%, which meets the technical index requirement of SOC prediction error of 5%.It has certain practical application significance for the estimation of lithium batteries SOC of electric vehicles.

    参考文献
    相似文献
    引证文献
引用本文

高俊岭, 张义哲.基于PSORBF神经网络的锂电池SOC估算[J].重庆工商大学学报(自然科学版),2020,37(2):37-41
GAO Jun-ling, ZHANG Yi-zhe. SOC Estimation of Lithium Battery Based on PSORBF Neural Network[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2020,37(2):37-41

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-06-08
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升