基于最大池化层参数的优化模型在引力波天文学中的应用
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Application of Optimization Model Based on Maximum Pooling Layer Parameters to Gravitational Wave Astronomy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对Gabbard等人发表在《Pyhsical Review Letters》上的文章“Matching Matched Filtering with Deep Networks for Gravitational-Wave Astronomy ”,提出了一种卷积神经网络优化模型。文章将卷积神经网络应用于引力波信号的识别,研究最大池化层参数对模型分类能力的影响,调整模型中超参数提升引力波信号分类的准确率;将优化后的网络结构与Gabbard 的卷积神经网络用于相同的模拟数据集,并在测试集上绘制了接受者操作特性曲线(Receiver Operating Characteristic curve,简称ROC 曲线),计算了ROC 曲线下的面积;结果证明:相比于未优化的网络,此处的模型在ROC下的面积在数值上提高了0.025 4~0.032 6;同时,改变噪音的振幅,将两种方法应用于新的数据集上,结果同样证明,优化后网络效果更好,鲁棒性强。

    Abstract:

    n this paper, the convolutional neural network is applied to the identification of gravitational wave signals, the influence of the maximum pooling layer parameters on the classification ability of the model is studied, and the accuracy of the superparameters in the model to improve the classification of gravitational wave signals is adjusted. The optimized network structure and Gabbard′s convolutional neural network were used for the same simulation data set, and the Receiver Operating Characteristic curve (ROC curve) was plotted on the test set and the ROC curve area was calculated.The results show that our model has increased the area under ROC by 0.0254 to 0.0326 compared with the unoptimized network. At the same time, we also changed the amplitude of the noise and applied the two methods to the new data set. The results also prove that the network is better and more robust after optimization.

    参考文献
    相似文献
    引证文献
引用本文

罗华美.基于最大池化层参数的优化模型在引力波天文学中的应用[J].重庆工商大学学报(自然科学版),2020,37(1):59-64
LUO Hua-mei. Application of Optimization Model Based on Maximum Pooling Layer Parameters to Gravitational Wave Astronomy[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2020,37(1):59-64

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-01-15
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升